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Abstract - Standalone PV battery systems have great potential 

to power the one billion people worldwide who lack access to 

electricity. Due to remoteness and poverty, durable and 

inexpensive systems are required for a broad range of 

applications. However, today’s PV battery systems do not yet 

fully meet this requirement. Especially batteries still prove to 

be a hindrance, as they represent the most expensive and fastest-

aging component in a PV battery system. This work aims to 

address this by prolonging battery life. For this purpose, a 

forecast-based charging strategy was developed. As lithium-ion 

batteries age slower in a low state of charge, the goal of the 
operation strategy is to only charge the battery as much as 

needed. The impact of the proposed charging strategy is 

examined in a case study using one year of historical data of 14 

standalone systems in Nigeria. It was found that the proposed 

operation strategy could reduce the average battery state of 

charge by around 20% without causing power outages for the 

mini-grids. This would significantly extend the life of the 

battery and ultimately lead to a more durable and cheaper 

operation of standalone PV battery systems. 

 

 
Index Terms  

Battery storage, Photovoltaic, Operation strategy, Off-grid, Rural 
electrification, Africa, Forecast 

1. INTRODUCTION 

In Sub-Saharan Africa, 548 million people in 2018 had no 

access to electricity [1]. The vast majority of them live in rural 

areas [2]. It is often impossible or economically unfeasible to 

connect these areas to the national energy grid [2]. Additionally, 

long-distance grid extensions are often unreliable, as 59% of 
rural households in Nigeria reported daily blackouts 

in 2016 [3]. To overcome the stated deficits, the World Bank 

identified that mini-grid solutions are essential and wants to 

connect 490 million people worldwide to a total of 210,000 

mini-grids by 2030 [2]. For comparison, in 2019 47 million 

people worldwide were connected to 19,000, mini-grids [2]. 

Half of the planned mini-grids are announced to be built in 

Africa [2]. Historically, diesel generators have been a common 

technology for standalone energy systems in sub-Saharan 

Africa [2]. A shift towards renewable solutions could be 

achieved through continuous cost reduction of batteries, 

photovoltaic (PV) panels, and PV inverters [2]. In addition, PV 

battery systems are more reliable, reduce air pollution, and are 

less noisy when compared to diesel generators [2, 4, 5]. 

 

Batteries contribute to a large part of the lifetime costs of PV 

battery systems [6, 7].  In addition to the already high initial 

cost, most of the batteries in this application have a 

comparatively short life of 5-10 years and therefore need to be 

replaced more frequently than PV panels or inverters, which 
nowadays can last up to 30 years. But due to difficult external 

conditions like high temperatures, sand, and torrential rain in 

Sub-Saharan Africa, a lifetime of 20 years is more realistic [2]. 

When replacing, not only the cost of the battery must be 

considered, but also the complicated procurement and 

installation in rural areas in Sub-Saharan Africa. Hence, it is 

desirable to maximize battery life. 

 

For autonomous mini-grids in Sub-Saharan Africa, lithium-ion 

(Li-ion) batteries have overtaken lead-acid batteries and 

become the main battery technology [2]. In contrast to lead-acid 
batteries, Li-ion batteries should be operated at a low state of 

charge (SOC) to decelerate aging processes. Nevertheless, most 

solar mini-grids in Sub-Saharan Africa charge their battery 

whenever there is surplus energy available from solar 

generation. This can lead to batteries being operated in high 

SOCs for most of the time, which again accelerates battery 

aging. 

 

1.1 Objective 

This paper proposes a forecast-based operation strategy to 

extend the life of Li-ion batteries in standalone PV battery 

systems. The objective of the operation strategy is to only 

charge the battery as much as needed and thereby keep the 

battery in lower SOC. This dynamic operation is enabled by 

day-ahead forecasts of PV generation and consumption. To 

ensure that errors in the prediction don’t lead to empty batteries, 

safeguards are introduced. 

 

Forecast-based charging strategy to prolong the 

lifetime of lithium-ion batteries in standalone 

PV battery systems in Sub-Saharan Africa 
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a Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Germany 
b Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, Germany 

c Juelich Aachen Research Alliance, JARA-Energy, Germany 
d AMMP Technologies B.V., Netherlands 

*These authors contributed equally to this paper,  
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This work has access to one year of historical data from 14 

standalone battery systems in Sub-Saharan Africa, which are 

used to train a forecast model as illustrated in Fig. 1. Based on 

this, the operation of the systems is simulated to investigate the 

impact of the proposed operational strategy on the 14 energy 
systems.  

 

 
 

Fig. 1. Overview of input data, ideation, and methodology 

This paper solely focuses on the reduction of the SOC to 

increase battery life. Other battery aging factors like 

temperature, charging rate, depth of discharge or cycle 

frequency are not optimized. 

1.2 Literature review 

 

Forecast-based charging strategies are established in other PV 

battery applications. Especially for grid-connected PV battery 

systems and microgrids, they have been researched for some 

time and are also used in commercial applications.  The 

following overview of existing literature on forecast-based 

strategies in these applications is supported by a comprehensive 

list in Table 1.  

 

For grid-connected PV battery systems, forecast-based 

charging strategies are mainly used to reduce the utility costs 
and increase the battery lifetime [8–12]. However, there are also 

strategies that neglect battery aging and only minimize utility 

costs [13, 14]. The latter is of no further interest for this work. 

The former has been shown to prolong battery lifetime by 2-5 

years on general lifetimes of 5-10 years [10–12]. The strategies 

aim to only charge as much energy into the battery as needed 

[8–12]. Thereby the SOC is kept relatively low, which in turn 

extends the calendar life of a Li-ion battery. Since full battery 
discharges are not a critical issue in grid-connected 

applications, the forecasts-based strategies here are designed in 

such a way that they can regularly lead to fully discharged 

batteries [10, 11]. 

 

In micro-grids, forecast-based charging strategies are used to 

optimize the interaction of PV, battery, diesel genset, and 

optionally wind and grid [15–20]. The objective function is to 

optimize the operation costs by reducing the costs of fuel, 

genset wear, and battery wear. Most available research focuses 

on lead-acid batteries, which have different aging mechanisms 

compared to Li-ion batteries.  
 

The forecast-based charging strategy proposed in this work is 

mainly inspired by the approaches for grid-tied applications in 

[8–12].  In contrast to grid-tied systems, a full battery discharge 

leads to a power outage in standalone systems and consequently 

needs to be avoided. The proposed operation strategy addresses 

this risk by introducing safeguards. 

 

1.3 Novelty and contribution 

 

The selected references show potential for battery aging 

optimization in PV battery systems. However, all references 

focus on either grid-connected systems with a Li-ion battery or 

standalone systems with a lead-acid battery.  

The novelty of this paper is to propose a battery life-extending 

operation strategy for standalone systems with Li-ion batteries. 

 
Unlike most other work on operating strategies to extend 

battery life, this work has access to historical data from a large 

number of economically operated systems. 
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Table 1  
Overview of existing literature on forecast-based charging strategies 

Title Author Application Battery 

type 

Battery aging 

considered? 

Objective function Forecast type 

Aging-aware predictive control of PV-

battery assets in buildings [8] 

J. Cai, H. Zhang, X. Jin Grid-connected PV 

battery system 

Li-ion Yes Optimise utility costs and 

battery lifetime 

Perfect forecast 

assumed 

Optimal operation of hybrid PV-

battery system considering grid 

scheduled blackouts and battery 

lifetime [9] 

M. Alramlawi, A. 

Gabash, E. Mohagheghi, 

P. Li 

Grid-connected PV 

battery system 

Lead-

Acid 

Yes Optimise utility costs and 

battery lifetime 

Perfect forecast 

assumed 

Comparison of different operation 

strategies for PV battery home storage 

systems including forecast-based 

operation strategies [10] 

G. Angenendt, S. 

Zurmühlen, H. Axelsen, 

D.U. Sauer 

Grid-connected PV 

battery system 

Li-ion Yes Optimise utility costs and 

battery lifetime 

Perfect forecast 

and persistence 

forecast 

Enhancing Battery Lifetime in PV 

Battery Home Storage System Using 

Forecast Based Operating Strategies 

[11] 

G. Angenendt, S. 

Zurmühlen, R. Mir-

Montazeri, D. Magnor, 

D.U. Sauer 

Grid-connected PV 

battery system 

Li-ion Yes Optimise utility costs and 

battery lifetime 

Perfect forecast 

and persistence 

forecast 

The Impact of Control Strategies on 

the Performance and Profitability of 

Li-Ion Home Storage Systems [12] 

N. Munzke, B. Schwarz, 

J. Barry 

Grid-connected PV 

battery system 

Li-ion Yes (Evaluating impact of 

predictive strategies on 

battery ageing) 

Commercial 

Forecast 

Operational Strategies for Battery 

Storage Systems in Low-voltage 

Distribution Grids to Limit the Feed-in 

Power of Roof-mounted Solar Power 

Systems [13] 

A. Zeh, R. Witzmann  Grid-connected PV 

battery system 

Li-ion No Optimise utility costs Artificially 

created 

including error 

Integration of PV Power and Load 

Forecasts into the Operation of 

Residential PV Battery Systems [14] 

J. Weniger, J. Bergner, 

V. Quaschning 

Grid-connected PV 

battery system 

Li-ion No Optimise utility costs Commercial and 

persistence 

forecast 

Energy Management for Lifetime 

Extension of Energy Storage System in 

Micro-Grid Applications [15] 

D. Tran, A. M. 

Khambadkone 

Micro-grid (PV + 

Wind + Generator 

+ Battery) 

Li-ion 

and 

Lead-

Acid 

Yes Optimize battery aging, 

power loss and power 

deviation 

Markov-Chain 

Assessing the value of forecast-based 

dispatch in the operation of off-grid 

rural microgrids [16] 

S. Mazzola, C. Vergara, 

M. Astolfi 

Micro-grid (PV + 

Genset + Battery) 

Lead-

Acid 

Yes (only 

cyclic) 

Optimize operation costs 

(fuel costs, genset wear, 

battery wear) 

Perfect and 

erroneous 

forecast 

A Model Predictive Control Approach 

to Microgrid Operation Optimization 

[17] 

A, Parisio, E. Rikos, L. 

Glielmo 

Micro-grid (PV + 

Grid + Battery + 

Genset) 

Unknown Yes (only 

cyclic) 

Optimize operation costs 

(fuel costs, genset wear, 

battery wear, utility grid 

costs) 

Support vector 

regression 

Assessing the impact of a two-layer 

predictive dispatch algorithm on 

design and operation of off-grid hybrid 

microgrids [18] 

L. Moretti, S. Polimeni, 

L. Meraldi, P. Raboni, S. 

Leva, G. Manzolini 

Micro-grid (PV + 

Genset + Battery) 

Li-ion 

and 

Lead-

Acid 

Yes (only 

cyclic) 

Optimize operation costs 

(fuel costs, genset wear, 

battery wear) 

SARIMA for 

Load forecast 

and artificially 

created for PV 

forecast 

A Two-Stage Model Predictive 

Control Strategy for Economic Diesel-

PV-Battery Island Microgrid 

Operation in Rural Areas [19] 

J. Sachs, O. Sawodny Micro-grid (PV + 

Genset + Battery) 

Lead-

Acid 

Yes Optimize operation costs 

(fuel costs, genset wear, 

battery wear) 

SARIMA 

Daily operation optimisation of hybrid 

stand-alone system by model 

predictive control considering ageing 

model [20] 

R. Dufo-López, L. A. 

Fernández Jiménez, I. J. 

Ramírez-Rosado, J. S. 

Artal-Sevil, J. A. 

Domínguez-Navarro, J. 

L. Bernal-Agustín 

Micro-grid (PV + 

Genset + Wind + 

Battery) 

Lead-

Acid 

Yes (only 

cyclic) 

Optimize operation costs 

(fuel costs, genset wear, 

battery wear) 

Persistence 

Forecast 

Control strategy for a standalone 

PV/battery hybrid system [21] 

H. Mahmood, D. 

Michaelson, J. Jiang 

Standalone PV 

battery 

Lead-

Acid 

No Only Control No forecast used 

Optimierung des Einsatzes von Blei-

Säure-Akkumulatoren in Photovoltaik-

Hybrid-Systemen unter spezieller 

Berücksichtigung der Batteriealterung 

[22] 

D. U. Sauer Standalone PV-

Hybrid 

Lead-

Acid 

Yes Decelerate battery raging 

while ensuring robust 

electricity supply 

No forecast used 

Optimizing vehicle-to-grid charging 

strategies using genetic algorithms 

under the consideration of battery 

aging [23] 

B. Lunz, H. Walz, D. U. 

Sauer 

Battery in electric 

vehicle for V2G 

Li-ion Yes Charge battery while 

optimising battery aging 

and energy trading profit 

Perfect forecast 

assumed 
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2. METHODOLOGY 

This paper proposes a forecast-based operation strategy to 

increase the lifetime of Li-ion batteries in standalone PV battery 

systems. The goal of the proposed strategy is to only charge the 

battery as much as needed while minimizing the risk of an 
empty battery. 

 

This paper has access to one year of historical data for 14 

standalone PV battery systems in Sub-Saharan Africa 

monitored by the company AMMP. First, this data is examined 

to understand the historical operation and potential for 

optimization. Later, the historical data is used to simulate a 

scenario in which the systems are operated with the new 

proposed strategy.  

 

Figure 2 gives an overview about the structure of this chapter, 

which starts with a brief description of the systems and the data 
set. Afterwards, the historical operation is analyzed with a focus 

on the potential for optimization. Further, the methods used to 

create PV generation and consumption forecasts are presented. 

Finally, the idea and algorithm of the proposed operation 

strategy are outlined. 

 

 

Fig. 2. Basic Idea of proposed operation strategy 

2.1 Data Set 

 
This section describes the application and topology of the PV 

battery system considered in this work. It also explains how the 

historical time series data was collected. 

 

2.1.1 Overview 

 

All considered systems supply shops in a local market in 

Nigeria. This market is not connected to the national power 

grid. Before using PV battery systems, the market was powered 

by diesel generators.   

 
Table 2 
System overview 

Number of systems 14 

End-user Commercial 

Human settlement Urban 

Country Nigeria 

Battery chemistry Lithium-iron phosphate 

(LFP) 

Battery energy (per system) 10 kWh 

Installed PV power (per 

system) 

9.75 kWp 

System coupling DC 

All considered systems share a similar typology, which is 

presented in  

Fig. 3. The PV panels are DC coupled. Furthermore, lithium 

iron phosphate (LFP) batteries are used.  

 

 
 

Fig. 3. System Topology and measurement point 

At each site, two DC meters and one AC meter are installed, as 

illustrated in Fig. 3. The DC meters are integrated into the 

respective DC-DC converter to monitor the battery and the PV 

panels. For the AC meter at the load side, an external energy 

meter is used. Each meter measures voltage and current. Based 
on this, other quantities such as power, energy, and battery SOC 

are derived locally. Further, a temperature sensor is installed to 

monitor the battery temperature. Each device transmits its data 

to a controller device via the MODBUS protocol. From here, 

the data is transmitted either by a cellular or ethernet connection 

to a cloud database.  

In this work, the following data is used in a 1-hour resolution:   

 

• PV energy  

• Consumption energy 

• Battery SOC 
 

2.1.2 Historical operation 

 

This section intends to give insights into the historical system 

operation to understand the further methodology. At first, a 

single system is analyzed in detail. This system is referenced as 

system 1. Afterwards, the other systems are included in the 

analysis. 

 

The operation of system 1 is visualized for an exemplary week 

in Fig. 4. The upper part of the graph shows that the 

consumption (blue dotted line) is very similar on all days except 
Sunday. This is because the market is closed on Sundays. 

Moreover, there is no consumption at night because the stores 

are closed, and electricity consumption at night is even 

prohibited. The figure also displays the PV generation as a 

yellow dotted line. In the morning, PV generation often spikes 

before falling back to match consumption. To understand this 

behavior, it is helpful to look at the SOC curve. Here, it can be 

observed that the battery is fully charged every day already in 

the morning. As the system is not connected to a grid, the 

surplus PV power cannot be used to charge the battery and 

needs to be limited to the consumption demand. Therefore, the 
system generates a lot less energy than theoretically possible. 

In the evening, the available PV power falls below consumption 

demand. Hence, the batteries are used to power the loads. 

 

Historical Data Forecasting
Optimized 

State of Charge
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Fig. 4. Operation of system 1 from 16th November 2019 to 23rd 

November 2019 

Figures 5 to 7 show the distribution of historical data for all 

recorded days of the given system to give a broader impression 

of the typical system operation. The data is presented as fan 

charts in such a way that each quarter hour of a day is assigned 

by the distribution of all values over the year in that quarter 

hour. Fig. 5 visualizes the consumption demand in which the 

median describes a typical commercial load profile. Figures 6 

and 7 show the PV generation and battery SOC, respectively. 

Typically, at 5:00 AM, the PV panels start to generate 

electricity (Fig. 6). Because no consumption is required at that 
time, the energy is used to charge the battery. Therefore, the 

battery SOC (Fig. 7) rises between 5:00 AM and 7:00 AM. 

Between 7:00 AM and 8:00 AM in the morning, the SOC rises 

to 100%, and thus, the battery is fully charged. 

 

 

 
Fig. 5. Fan chart of Consumption (System 1) 

 
Fig. 6. Fan chart of PV Generation (System 1) 
 

 
Fig. 7. Fan chart of battery SOC (System 1) 

 

As soon as the battery is fully charged, the PV power (Fig. 6) is 

actively limited, as the PV power can only be used to meet the 

consumption demand. From here on, the PV generation follows 
the consumption curve for most of the day. Around 4 PM, the 

battery SOC starts to decline again. At this time, the PV power 

is no longer sufficient to meet the consumption demand. The 

battery steps in to supply the missing power. The battery 

reaches its minimum SOC around 5 PM and remains at the same 

level until the next morning.  

 

The figures show that the battery is barely seeing any 

significant discharges and is kept fully charged for many hours 

of the day. Furthermore, the potential peak PV power of 9.75 

kWp is not even closely reached on any day, as the fully 
charged battery leads to active curtailment of the PV power. 

 

 

Table 3 shows various key performance indicators (KPIs) for 

each of the 14 systems. Each indicator is calculated for the 

whole period of 2019. The PV generation and consumption 

are close to each other because, with the exception of losses, 

only as much energy can be generated as is consumed locally 

in an off-grid application. The average system efficiency is 

calculated by dividing the consumed energy by the generated 

energy. The main reasons for losses in the systems are the 

efficiencies of inverter and battery as well as cable losses. The 
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75% SOC confidence interval describes the window in which 

the 75% of the SOC values were located. This interval is formed 

around the median value. This KPI shows that the batteries of 

all systems are kept in a high or full SOC for most of the time. 

The direct consumption rate describes the proportion of the 
consumed electricity that came directly from the solar system 

without taking the detour via the battery. The capacity factor 

represents the ratio of the average PV power over the whole 

year and the rated peak power. A typical capacity factor for a 

PV system in Nigeria is 16%  to 20% [24]. The values for the 

examined systems tend to be much lower, as the consumption 

of the systems is relatively low and the PV power is often 

actively curtailed as soon as the battery is fully charged. Finally, 

the total downtime due to an empty battery describes how 

often the battery of each system was fully discharged while 

there was insufficient PV power to power the loads. This finally 

leads to downtimes. It can be observed that downtimes tend to 
be more frequent for systems with high consumption. 

 

With only one cycle per day and the batteries not being 

discharge below 60% - 80% on most day, the energy throughput 

of the battery is rather low. Further, the maximum charging / 

discharging power rates of 2 kW are rather low at 10 kWh 
battery capacity.  While the rated maximal charge / discharge 

rate of the LFP batteries is around 1 C, the maxima in the 

operation of the analyzed systems is around 0.2 C. This leads to 

the assumption, that cyclic aging (influenced by charging 

frequency, charging rate, depth of discharge) has a minor role 

compared to calendar aging (mainly influenced by SOC and 

Temperature). 

 

 

 

 

 

Table 3  
Operational key indicators for each system in 2019

System 

ID 

PV 

Generation 

Consumption Average 

system 

efficiency 

75% SOC 

confidence 

interval 

Direct 

consumption 

rate 

Capacity 

factor 

Total 

downtime due 

to empty 

battery 

1 2.99 MWh 2.68 MWh 89.6% 77% - 100% 94.4% 3.5% 0.0h 

2 2.56 MWh 2.23 MWh 87.1% 91% - 100% 96.3% 3.0% 0.0h 

3 2.61 MWh 2.27 MWh 86.9% 92% - 100% 96.4% 3.0% 0.0h 

4 2.67 MWh 2.29 MWh 85.8% 92% - 100% 97.0% 3.1% 0.0h 

5 2.96 MWh 2.67 MWh 90.2% 84% - 100% 92.2% 3.5% 3.5h 

6 7.27 MWh 6.23 MWh 85.7% 50% - 100% 91.0% 8.5% 126.0h 

7 4.62 MWh 3.93 MWh 85.1% 82% - 100% 94.0% 5.4% 0.0h 

8 4.41 MWh 3.90 MWh 88.5% 65% - 100% 95.0% 5.2% 48.0h 

9 3.78 MWh 3.26 MWh 86.2% 66% - 100% 89.0% 4.4% 21.0h 

10 4.07 MWh 3.61 MWh 88.7% 70% - 100% 94.0% 4.8% 25.5h 

11 3.31 MWh 2.99 MWh 90.3% 83% - 100% 95.0% 3.9% 4.5h 

12 2.36 MWh 2.10 MWh 88.9% 90% - 100% 96.5% 2.7% 0.0h 

13 2.61 MWh 2.36 MWh 90.0% 90% - 100% 96.0% 3.1% 10.5h 

14 3.9 MWh 3.5 MWh 89.9% 79% - 100% 91.0% 4.6% 0.0h 

2.2 Forecasts 

 

The proposed operation strategy is based on forecasts. This 

chapter describes the algorithms used in this work to forecast 

both the day-ahead generation and consumption. Both forecasts 

are calculated in a resolution of 1h with a 24h time horizon. 

 

2.2.1 Consumption Forecast 

 

For the consumption forecast, a combination of a daily 

clustering technique and the autoregressive integrated moving 

average (ARIMA), as proposed in [25], is chosen. In contrast to 

[25], a two-level clustering method is used. At first, the 

weekdays are clustered based on the total energy consumption 

using the k-means Algorithm [26]. This typically led to one 
group of working days (Monday to Saturday) and one group for 

Sundays. The day for which the prediction is to be made is then 

associated with  one of the clusters based on its day of the week. 

Finally, an ARIMA model is used to extrapolate the historical 
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operation of the days in the respective cluster to the forecast 

day. Holidays are not considered in this work, which can 

increase accuracy even further [25]. It shall be noted that in 

contrast to [25], the number of clusters k is not set 

automatically, but the optimal number of clusters is found as 
part of the algorithm using the silhouette method [26].  

 

2.2.2 Generation Forecast 

 

The goal of the generation forecast is to predict the theoretical 

PV generation power curve of the next day. Potential 

curtailments due to a fully charged battery are neglected. The 

basic idea of this forecast method is to use a horizontal 

irradiation forecast and convert it to a power forecast using a 

linear regression. 

For the irradiation forecast, the publicly available historic 

downward short-wave radiation flux forecast from National 
Oceanic and Atmospheric Administration (NOAA) is used 

[27]. Since NOAA provides the data in a spatial resolution of 

0.25 by 0.25 degrees, the irradiation forecast can be used 

accordingly for the individual locations.  

To  perform the linear regression, a linear least square 

regression model (LSR) is trained using historic irradiation data 

from NOAA (independent variable) and historic PV power 

(dependent variable) as proposed in [28].  

To take the orientation of the PV panels into account, both the 

historic irradiation data and the irradiation forecasts are 

projected to the surface normal of the PV panels with the help 
of  the open-source tool pvlib python [29].  

Real irradiation data from the sites for training the model or 

validating the data was not available. 

 

Comparisons between the prediction and the real feed-in power 

are presented in Fig. 18 and Fig. 19.  

2.3 Proposed operation strategy 

 

In this section, a forecast-based charging strategy for standalone 

PV battery systems with a Li-ion is proposed. Firstly, the 

general objective and functioning of the strategy is outlined. 

Later, the exact algorithm of the proposed strategy is outlined.  

 

2.3.1 Basic idea of proposed operation strategy   

 

The calendric aging of a Li-ion battery is accelerated by high 

SOCs and high ambient temperatures [30–33]. The basic idea 
of the proposed algorithm is to keep the SOC as low as possible. 

Meanwhile, the SOC shall always stay above a certain security 

threshold to prevent the battery from being fully discharged 

during an unpredicted event.  

 

Fig. 8 illustrates the basic idea of the presented algorithm by 

comparing it to a conventional strategy. Two approaches are 

used to decrease the SOC. While in the conventional operation 

of a PV battery system the battery is directly charged in the 

morning, the proposed strategy actively decides to delay the 

charging period to later in the day (similarly proposed in [12]). 

Hereby, the battery is kept longer at a low SOC. Additionally, 
an upper SOC cap is introduced to ensure that the battery is only 

charged to the maximum required SOC (similar to [11]). 

Thereby, very high SOCs are avoided and the average SOC is 

decreased. The exact delay time and the exact SOC cap are 

dynamically calculated based on the forecasts. To prevent 

batteries from being fully discharged, two safety buffers have 

been built into the strategy. First, a conservative forecast is used 
instead of the mean forecast. Secondly, a buffer is kept free in 

the battery and is not used for the dynamic strategy.

 
Fig. 8. Basic principle of proposed operation strategy 

 

2.3.2 Algorithm of proposed operation strategy 

 

The proposed operation strategy requires three input 

parameters, which are outlined in Table 4. The adjustable 

parameter !"#!"#
!$%$&is used as a security buffer in case of an 

unforeseen event.$!"#!"#
!$%$& determines the portion of the 

battery charge that shall not be considered for the dynamic 

operation strategy. The algorithm will operate the battery in 

such a way that the SOC should not fall below this threshold in 

regular operation. If the SOC should fall below this threshold 

due to unforeseen events, the algorithm will try to charge the 

battery with any surplus power until the SOC is above !"#!"#
!$%$& 

again. Through an amendment !"#!"#
!$%$& % the operation strategy 

can be tuned to be more conservative or more dynamic. The 

impact of such amendments will be examined in Section III of 

this paper. Further, the size of the battery $
&'(&&$is required as input of the algorithm. Finally, $
')*(+,- represents the energy efficiency from PV to battery and 

from battery to load. To reduce complexity, it is assumed that 

both are equal. 

 
Table 4 
List of input parameters 

()*)+,-,* Definition 

!"#!"#
!$%$& Adjustable security buffer 

&'(&& Size of battery in Wh 

')*(+,- PV to battery (charge) and 

battery to load (discharge) 

efficiency (assumed to be equal) 
 

The algorithm defines three setpoints for the operation of the 

standalone system as outlined in Table 5. The exact value of 

each setpoint is dynamically calculated at each processing time 

.. of the algorithm. !"#!"#
,"(!

 represents the target value of the 

lowest SOC in case the forecasts are correct. $
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!"#/..-+!$%$&  defines the upper SOC cap, while $
.0&(+&
)*(+,-

determines the time at which to start charging the 

battery.  

 
Table 5 
Setpoints of operation strategy 

Setpoint Definition 

!"#!"#
,"(!

 Target value of the lowest SOC of the day based 
on forecasted energy 

!"#/.!$%$& Upper cap of SOC. PV power is curtailed if 

SOC should exceed this setpoint 

.0&(+&
)*(+,-

 Time at which to start charging the battery 

 

Before outlining the exact calculation of each of the setpoints, 
the forecast variables used in the algorithm are introduced in 

Table 6. The algorithm requires forecasts with a time horizon 

of 24h. While the upper index "exp" stands for the mean of the 

forecast, the upper indexes "low" and "up" index represent the 

lower and upper boundary of the 95% prediction interval. 

 
Table 6 

List of forecast variables 

Variable Definition 

&.1
-2./.0&(+& % .-340 Expected PV energy generation 

between .0&(+& and 

.-34 $1 &23456$generation forecast. 

&.1
/./.0&(+& % .-340 Upper boundary of expected PV 

energy between .0&(+& and .-34 (95% 

prediction interval) 

&.1!"#/.0&(+& % .-340 Lower boundary of expected PV 

energy between .0&(+& and .-34 (95% 

prediction interval) 

&)"30
-2. /.0&(+& % .-340 Expected consumption energy 

between .0&(+& and .-34. 

&23456$consumption forecast. 

&)"30
/. /.0&(+& % .-340 Upper boundary of expected 

consumption energy between .0&(+& 
and .-34 (95% prediction interval) 

&)"30!"# /.0&(+& % .-340 Lower boundary of expected 

consumption energy between .0&(+& 
and .-34  (95% prediction interval) 

 

Using the energy forecasts, the algorithm predicts by how much 

the SOC will change in each of the considered time intervals. 

Here again, the median and the upper and lower quantiles are 

forecasted. By dividing the difference of the expected PV 

generation and the expected consumption by the energy 
capacity of the battery while multiplying it by the efficiency, 

the expected change of the SOC in each period is predicted (Eq. 

1). 

 

 

789:-2./.0&(+& % .-340

; $
&.1
-2./.0&(+& % .-340 $ < $')*(+,- $=$&)"30

-2. /.0&(+& % .-340$>
&'(&&

(1) 

 

Similarly, the upper and lower boundaries of the prediction 

interval for the expected change of the SOC are calculated (Eq. 

2, Eq. 3). 

 

 

789:/./.0&(+& % .-340

; $
&.1
/./.0&(+& % .-340 $ < $')*(+,- $=$&)"30!"# /.0&(+& % .-340$>$'

&'(&&

(2) 

 

 

789:!"#/.0&(+& % .-340

; $
&.1!"#/.0&(+& % .-340 $ < $')*(+,- $= &)"30

/. /.0&(+& % .-340$>$'
&'(&&

(3) 

 

Based on the forecasts for the ∆SOC, the algorithm calculates 

the setpoint !"#!"#
,"(! 1 This setpoint is used as the target value 

for the lowest SOC of the next 24 hours. It is set in a way that 

the SOC stays above !"#!"#
!$%$& even if the "low" scenario of the 

forecast occurs. !"#!"#
,"(!

 is determined by adding the expected 

error of the forecast during the discharge period to the security 

threshold !"#!"#
!$%$& (Eq. 4). $

 

 
SOC567

8695 $; SOC
567

5:;:<

?$7!"#=>?/-@A% -=A0$=$789:567/-@A% -=A0 
(4) 

where: 

-@A = start of next discharge period 

-=A = end of next discharge period 

 

After setting SOC!"#
,"(!

, the algorithm determines the setpoint 

!"#/.!$%$&. !"#/.!$%$& is used as the upper charging cap. If the 

SOC should rise above !"#/.!$%$&, the PV power shall be 

curtailed to only power the consumption. 

 

!"#/.!$%$& is determined so that when the discharge period starts 

with that value, the battery will reach SOC!"#
,"(!

 at the end of the 

discharge period in case of the median forecast. Hence, 

!"#/.!$%$& results from the sum of !"#!"#
,"(!

 and the expected 

789:  of the discharge period (Eq. 5). The median forecast 

scenario ("exp") is used in this step, as any considerations about 

inaccuracies of the forecast are already included in the 

calculation of !"#!"#
,"(!

. 

 !"#/.!$%$& ; !"#!"#
,"(! ?$7!"#=>?/-@A% -=A0$ (5) 

Finally, the start of the charging period .0&(+&
)*(+,-

 is dynamically 

calculated by the algorithm. This setpoint allows delaying the 

charge of the battery system from the morning to later during 

the day.  It is determined as the latest point in time at which 

starting to charge the battery would still be sufficient to reach 

!"#/.!$%$& at the end of the charging period for the "low" 

scenario.  
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At each time .. the algorithm is processed, it questions whether 

the cumulative charge 789:!"# during the remaining charging 

period is sufficient to charge the battery up to !"#/.!$%$& at the 

end of the charging period. This logic is reflected in Eq. 6. The 

operation strategy will start charging the battery once the term 

is true. 

 
if: 

!"#/.!$%$& $@ $!"#A..B ?$789:!"#A-?% -=BB (6) 

è charge battery 
 

else: 

 

è don’t charge battery 
 

where: 

-? = processing time 

-=B = end of charge period 

 

2.4 Simulation and assumptions 

 
To evaluate the impact of the proposed forecast-based 

charging strategy, the operations under the new strategy for 

2019 are simulated for each system and compared to real 

operations from that year. The simulation is based solely on 

energy flows and the SOC of the battery. To allow a 

calculation of the SOC purely based on energy quantities, it is 

assumed that the SOC is equal to the state of energy (SOE).  

 

For the simulation of the load the real consumption data were 

used. The PV generation was often limited in real operation.  
For the simulation, it is necessary to consider how much PV 

energy could have been produced during these periods. For this 

purpose, historical irradiation data from NOAA were used. 

Based on that, the potential energy was calculated using the 

model of the solar plants of each system as in C.2). 

 

Efficiencies are respected in the simulation and are assumed to 

be static. For the LFP batteries, a DC-round-trip efficiency of 

90% is considered [34]. For the inverter 94.3% [35] and for the 

MPPT 98% are assumed [36]. Any other losses, such as cable 

losses are neglected. The considered systems have a hard turn-
off threshold if the battery SOC drops below 20%. If the SOC 

should drop below 20%, a power outage is assumed. 

 

3. RESULTS AND DISCUSSION 

The hypothesis of this paper is that the proposed forecast-based 

charging strategy can decrease the average battery SOC in 

standalone PV battery systems, without causing potential 

negative effects like a fully discharged battery causing a power 
outage. In this work, this hypothesis is tested using a 

simulation-based approach. To evaluate the consequences of 

the new operating strategy, the reduction in average SOC and 

the reduction in the time the battery is fully charged are 

compared with the increase in power outages. All these 

indicators are measured over the course of an entire year. 

 

The proposed operation strategy can be set as more dynamic or 
conservative. This is done by increasing/decreasing the 

parameter !"#!"#
!$%$&. As described in section II.D., the 

parameter describes the portion of the battery charge that is not 

included in the dynamic calculations but is kept as a buffer. A 

lower value means less buffer and thereby a more dynamic 
strategy. The comprehensive impact of setting different values 

for this parameter are outlined later in this chapter. 

 

Firstly, a closer look at the impact of the new strategy on the 

daily operation based on the examples of two systems over a 

short period is taken. For those examples,  !"#!"#
!$%$& ; CDE is 

used. Afterwards, the results of choosing different values for 

!"#!"#
!$%$& are analyzed in detail for one system over a period of 

a year. Lastly, an overview of the full-year analysis for different 

!"#!"#
!$%$& and all 14 systems is presented. 

 

Fig. 9 shows the operation of system 1 for the old and the new 

strategy in a period from 2nd November 2019 to 6th November 
2019. The upper graph shows the power balance of the old 

operation and the middle graph for the new operation. The 

lower graph displays the SOC of both the old and new 

strategies. The results show that the new operation strategy 

leads to less battery charging in the morning. Especially on the 

3rd November 2019, when the battery is not charged at all in the 

morning. Furthermore, the new SOC curve shows that the 

battery is not fully charged at the end of the day anymore. 

Thereby, the SOC can be held equal to or lower than the real 

SOC over the whole period. This period represents a successful 

example of the new operation strategy, as the average SOC can 
be reduced while the battery SOC never drops below 20%, and 

thereby no power outages are caused. 

 

 
 
Fig. 9. Comparison of old and new operation strategy for system 1 

from 2nd November 2019 to 6th November 2019; !"#!"#
!$%$&= 60% 

Fig. 10 illustrates a similar graphic for system 7. Compared to 

system 1, system 7 has a much higher average consumption. For 

system 1 the dynamic operation strategy does not always fully 

charge the battery. But as the algorithm recognizes that the 

consumption is much higher for system 7, the algorithm decides 

to charge the battery fully and thereby mitigate the risk of a dead 

battery. The only benefit of the new operation strategy for this 

system is that the charging period can be postponed from 

morning to noon or afternoon. Thereby the time in which the 
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battery is fully charged is reduced by around 50%. The impact 

of the security threshold !"#!"#
!$%$& can be well observed in this 

example. On both 4th October 2019 and 5th October 2019, the 

battery SOC is below the set threshold of !"#!"#
!$%$& = 60%. 

Hence the battery is immediately charged up to 60% in the 

morning. Afterwards, the charging process is stopped for a few 

hours. Finally, during midday, the battery gets fully charged.  

 

 
 
Fig. 10.  Comparison of old and new operation strategy for system 7 

from 3rd October 2019 to 6th October 2019; !"#!"#
!$%$&= 60% 

After a closer look at examples of operation over a few days, 

the operation of system 1 over a whole year and for different 

values of !"#!"#
!$%$& will now be analyzed. Figures 11 to 14 

illustrate the SOC distribution of the old and new strategies with 

different values for !"#!"#
!$%$&. Fig. 11 presents the SOC 

distribution for the old static operation strategy. It can be 

observed that the battery is at a high or full SOC for most of the 

time and is never fully discharged. Figures 12 to 14 show the 

resulting SOC distribution for the proposed dynamic strategy 

using different values for the parameter !"#!"#
!$%$&. The figures 

show that a lower !"#!"#
!$%$& generally leads to a lower SOCs. 

The SOC distribution of the conservative strategy with an 

!"#!"#
!$%$&= 80% is similar to the previous static operation. A 

difference can be observed in the morning. Here, the battery is 

fully charged less frequently because the dynamic operation 

strategy delays the charging. This results in an average SOC of 
82.2% while it was 85.2% with the old static operation strategy. 

Another indicator for the decrease of the battery SOC is the 

average time per day when the battery is fully charged. This 

time could be reduced from 11.5 hours per day to 7.1 hours per 

day.  

 

For the conservative strategy and the old strategy, no power 

outages have occurred. For the moderate strategy with 

!"#!"#
!$%$&= 60%, the average SOC decreased to 71.2%. The 

average fully charged hours per day are reduced to 2.4 hours a 

day. However, the battery is completely discharged once, which 

would have led to a power failure of 2 hours. In the old 

operation strategy, 0 hours of power outages due to an empty 

battery have occurred. The most dynamic strategy with 

!"#!"#
!$%$& = 40% is reducing the SOC even further with an 

average SOC of 57.6% and an average of 2.1 hours a day when 

the battery is fully charged. As a negative result, the power 

outages cumulate to 14.5 hours in the considered year. 

 

 

 
Fig. 11. SOC range with old operation strategy for system 1 

 

Fig. 12.  SOC range with conservative strategy: 89:567
5:;:<= 80% 

 

 

Fig. 13.  SOC range with moderate strategy: 89:567
5:;:<= 60% 
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Fig. 14.  SOC range with dynamic strategy: 89:567
5:;:<= 40% 

 
Finally, the impact of the proposed strategy for all systems is 

evaluated. Therefore, the full simulation is performed for each 

system and for 40 different !"#!"#
!$%$& values between 20% and 

100%. In each iteration, the following key indicators are 

calculated: 
 

• Total power outage time due to empty battery 

• Average SOC  

• Average time per day when the battery is fully charged  

 

Fig. 15 visualizes the power outage times for the new operation 

strategies for all 14 systems. The x-axis displays the respective 

value !"#!"#
!$%$&. As a reference, the power outage times for the 

old operation strategy are plotted for each system on the right 

side of the graphic. 

 

At !"#!"#
!$%$& = 100%, the new operation strategy achieves the 

same result as the old strategy. This is reasonable, as the full 

battery capacity is used as a security buffer. Thus, the battery is 

always charged, when possible, which is exactly the approach 

of the old operation strategy. For 65% < !"#!"#
!$%$& < 100%, the 

power outage times barely increase. The SOC is held 

sufficiently high to avoid additional outages. It shall be noted 

that the value of 65% is just an empirical finding for this data 

sample. When !"#!"#
!$%$& is lower than 65%, the occurrences of 

power outages increase almost consistently for all systems. 

Choosing a !"#!"#
!$%$& in this range can still be economically 

most beneficial.  However, a comprehensive trade-off between 

the costs of power outages and the benefits of decelerated 

battery aging must be carried out. 

 

In general, the graphic shows that the new operation strategy 

with !"#!"#
!$%$& = 65% would have resulted in a safe operation 

without significant increases in power outages. The benefits for 

battery aging when using this strategy are outlined based on Fig. 

16 and Fig. 17. 

 

 
Fig. 15. Power outages per year for all systems as a function of the 

operation parameter !"#!"#
!$%$& 

 

Fig. 16 outlines the impact of the new operation strategy on the 

average SOC. The average SOC serves as an indicator of 

whether the algorithm can reduce the SOC significantly. As 

outlined before, the result of the new operation strategy for 

!"#!"#
!$%$& = 100% is identical to the old strategy. For !"#!"#

!$%$& 

between 80% and 100%, the curves have a rather low gradient. 

In this range, only the charging delay has an impact on the 

operation and can slightly decrease the average SOC. Starting 

from !"#!"#
!$%$& < 80%, the dynamic algorithm additionally also 

decides to stop charging the battery at an upper charging 

threshold more frequently, which leads to a steeper decrease of 

the average SOC. A dotted line at !"#!"#
!$%$& = 65% is drawn, as 

it was shown before that no additional power outages are 

expected for  !"#!"#
!$%$& > 65%.  

 

When comparing the old operation strategy with the new 

operation strategy at  !"#!"#
!$%$&$= 65%, the figure shows that the 

average !"#!"#
!$%$& is reduced for all systems. For the old 

operation strategy, the average SOC across all systems is 

88.5%. For the new operation strategy at  !"#!"#
!$%$&$= 65%, the 

average SOC across all systems is brought down to 72%.  

 

 
Fig. 16. Average SOC for all systems as a function of the operation 

parameter !"#!"#
!$%$& 

Fig. 17 visualizes the average time per day in which the battery 

is fully charged, again for different values of  !"#!"#
!$%$&. This 

indicator is interesting for the evaluation of the algorithm, as 

the aging of a Li-ion battery progresses at the fastest pace if the 

battery is fully charged. 
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For 80% < !"#!"#
!$%$& < 100%, the curves of most systems show 

a steep slope. Even though the batteries are still getting fully 

charged here, the charging delay reduces the time they are fully 

charged significantly. At around 60% < !"#!"#
!$%$& < 80%, the 

algorithm decides to decrease the upper charging cap and stops 

fully charging the battery more often. For !"#!"#
!$%$& < 60%, the 

systems reach saturation for fully charged time per day between 
0 and 2 hours a day.   

 

 
Fig. 17.  Average full charged time per day for all systems as a function 

of the operation parameter !"#!"#
!$%$& 

In summary, the results show that it is possible to decrease the 

average SOC by ~20% and the average full charged time per 

day for all systems by ~7 hours without causing a fully 

discharged battery leading to significantly more power outages. 

Various sources have shown that the reduction of the average 

SOC and the average fully charged time, leads to a longer 

lifetime of Li-ion batteries [30–33].  

 

The results from the other literature evaluating similar 

operating strategies [10,11], but for grid-connected systems, 
showed a reduction of the average SOC by 13%.  

The comparatively higher reduction in this work can be 

explained by the fact that the systems considered in this work 

were operated at a high average SOC of 70%-90% with the old 

operation strategy, while the grid-connected system in [10,11] 

had an average SOC of 30%. Thus, there is more room for SOC 

reduction for the systems considered in this paper. It is worth 

noting, that standalone systems tend to have higher average 

SOCs when compared to grid-connected systems since the 

battery must not be fully discharged. Therefore, larger sizing 

leads to a higher buffer. 
 

Using realistic assumptions, true field data, and real forecasts 

in this work, the results promise high validity. However, as the 

simulation is only based on energy flows, a more complex 

simulation or practical field tests would lead to higher 

plausibility. 

4. CONCLUSION 

Rural electrification, climate change goals, and decreasing costs 
of PV systems and batteries enable the PV off-grid solution to 

gain significance in the African energy market. However, the 

market is very cost-sensitive and requires durable solutions. As 

batteries are the most expensive and least durable component of 

a standalone PV battery system, this work proposes a forecast-

based charging strategy to extend battery life.  

 

As the aging of lithium-ion batteries is accelerated when they 

are operated in a high state of charges, the proposed strategy 
pursues the goal of only charging the battery as much as 

necessary. To mitigate the risk of a dead battery and potential 

power outages, various safeguards are added to the algorithm. 

 

The reduction of the SOC is accomplished by two approaches. 

On one hand, the charge of the battery is postponed from the 

morning to the afternoon. On the other hand, an upper SOC cap, 

above which the battery is stopped being charged, is introduced. 

With the help of PV generation and consumption forecasts, the 

algorithm decides to which extent each of the approaches shall 

be used. As forecasts are not always accurate, an adjustable 

buffer is used as a safeguard. 
 

To evaluate the impact of the proposed strategy, a case study 

with 14 standalone PV battery systems powering a local market 

in Nigeria was conducted. Simulating the operation of 

considered systems for one year showed that the proposed 

charging strategy can be beneficial. Without causing additional 

power outages, the new strategy reduces the average SOC by ≈ 

20% for most systems while not causing additional power 

outages. Similarly, the average time per day in which the battery 

is fully charged was reduced by ≈ 7 hours.  

When tuning the strategy more dynamic, the SOC can be 
reduced even further. However, this comes at the cost that the 

battery is more often fully discharged which leads to power 

outages. Further research should investigate the period by 

which lowering the SOC through this operating strategy 

extends the life of an LFP battery. 

 

The results of this work can be extended to any standalone PV 

battery system and are not geographically limited. Systems with 

high average SOCs and low utilization of the battery can profit 

most, as the average SOC can be reduced to a greater extent, 

which in turn leads to a higher battery lifetime. Finally, this new 

forecast-based operation strategy may be of particular interest 
for batteries in tropical climates, as fast battery degradation 

poses a greater problem there."   
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APPENDIX 

Table 7 
List of acronyms 

Abbreviation Definition 

ARIMA Autoregressive integrated 

moving average 

KPI key performance indicator 

Li-ion lithium-ion 

LFP lithium iron phosphate 

LSR linear least square regression 

model 

NOAA National Oceanic and 

Atmospheric Administration 

PV photovoltaic 

SOC state of charge 

SOE state of energy 

 

Table 8 
List of symbols 

8F+GHI Unit Definition 

&'(&& Wh Size of battery in Wh 

&.1
-2./.0&(+& % .-340 Wh Expected PV energy 

generation between .0&(+& 
and .-34 

&.1
/./.0&(+& % .-340 Wh Upper boundary of 

expected PV energy 

between .0&(+& and .-34 

(95% prediction interval) 

&.1!"#/.0&(+& % .-340 Wh Lower boundary of 

expected PV energy 

between .0&(+& and .-34 

(95% prediction interval) 

&)"30
-2. /.0&(+& % .-340 Wh Expected consumption 

energy between .0&(+& and 

.-34 

&)"30
/. /.0&(+& % .-340 Wh Upper boundary of 

expected consumption 

energy between .0&(+& and 

.-34 (95% prediction 

interval) 

&)"30!"# /.0&(+& % .-340 Wh Lower boundary of 

expected consumption 

energy between .0&(+& and 

.-34  (95% prediction 

interval) 

')*(+,- % PV to battery and battery to 

load efficiency (assumed to 

be equal) 

!"#!"#
!$%$& % Adjustable security buffer 

!"#!"#
,"(!

 % Target value of the lowest 

SOC of the day based on 

forecasted energy 

!"#/.!$%$& % Upper cap of SOC. PV 

power is curtailed if SOC 

should exceed this setpoint 

789:-2./.0&(+& % .-340 % Expected change of SOC 

between .0&(+& and .-34   

789:/./.0&(+& % .-340 % Upper boundary of 

expected change of SOC 

between .0&(+& and .-34   

789:!"#/.0&(+& % .-340 % Lower boundary of 

expected change of SOC 

between .0&(+& and .-34   

.0&(+&
)*(+,-

 s Time at which to start 

charging the battery 

-@A s Start of next discharge 

period 

-=A s End of next discharge 

period 

-? s Time of processing 

-=B s End of charge period 

 

Fig. 18: Exemplary result of consumption forecast for system 1 



 14 

 
Fig. 19: Exemplary result of generation forecast for system 1 - only 
marked points are comparable, as real PV generation is mostly 
curtailed at midday due to fully charged battery 
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