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Abstract: Given the constraints associated with grid expansion costs, limited access to reliable

electricity, and priorities in addressing the climate agenda and Sustainable Development Goals in

low-income countries, microgrids and off-grid solar projects represent a viable solution for rural

electrification. This type of solution has the advantage of being less expensive than conventional

technologies, is rapidly scalable, affordable, environmentally sustainable, and can play a critical

role in empowering rural communities. In this context, this study proposed a spatial framework

for off-grid solar energy planning based on a Geographical Information System and Boolean logic,

Fuzzy logic, and Analytic Hierarchy Process Multicriteria Decision-Making methods. The results of

the applied methodology show that the selection of optimal locations for off-grid solar photovoltaic

microgrid projects in Mozambique is significantly influenced by the following order of criteria:

climatology, orography, technical and location, social, and institutional criteria. Geographically, about

49% or 344,664.36 km2 of the total study area is initially suitable for an off-grid solar photovoltaic

microgrid project; 4% is low suitable, 14% is moderately suitable, 18% is suitable, and 13% is highly

suitable. However, 51% of the ranked areas fall into the not feasible and restricted areas, mainly in

conservation areas, protected areas, and areas at high risk of flooding and cyclones, covering a total

of 387,005.5 km2 within the study area. In general, the approach helps to reduce uncertainty and

increase flexibility to identify appropriate sites and strengthen indicators of sustainable development

impacts of decentralized rural electrification.

Keywords: multicriteria decision-making; off-grid microgrid; solar photovoltaics; rural electrifica-

tion; Mozambique

1. Introduction

1.1. Motivation

The Sustainable Development Goals (SDGs) highlight the risks posed by the impacts
of climate change, undermining and reversing decades of progress on equality, food and
energy security, and other SDGs. Energy poverty remains widespread, with approximately
800 million people lacking access to electricity. Most of this population is in sub-Saharan
Africa in sparse rural areas far from urban centers, where the cost of electrification is
usually unaffordable. Mozambique is a country facing the same reality, with a very low
electrification rate, with overall access to electricity estimated to be below 31% in 2020
and only around 8% in rural areas [1,2]. Despite this fact, the government of Mozambique
has adopted the 2030 Agenda United Nations and is committed to achieving the SDGs [3].
One of the goals—SDG#7—establishes universal access to electricity by 2030. To achieve
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this goal, Mozambique has launched the Energy for All Programme, with the aim of
reaching 100% electricity access via increasing the electrification rate, especially in rural
areas, through the expansion of on-grid and off-grid solutions based on renewable and
non-renewable energy [4].

Despite a tripling of the electrification rate between 2006 and 2018, most rural areas
will not be electrified in the foreseeable future due to slow electrification, lack of basic
infrastructure, institutional barriers, and low ability and willingness to pay for energy
services [5,6]. Recognizing the limitations and costs of grid expansion, as well as the
priorities in addressing the climate agenda and SDG#7, decentralization of energy gen-
eration to rural communities in Mozambique has recently become an opportunity and
represents an important means of gaining prominence and making connections in the lives
of rural residents [7]. Figure 1 shows a map with data on the electricity access rate in each
province of Mozambique. It shows that electrification is mainly concentrated in urban and
peri-urban areas.

− −

Figure 1. Mozambique electricity rate in 2020. Data from [8].

Moreover, more than 3 billion people worldwide rely on polluting solid fuels for
cooking, causing an estimated 3.8 million premature deaths per year [9]. In this context, a
transition of the global energy system is of utmost relevance, as energy use is responsible
for the majority of global greenhouse gas (GHG) emissions. The accelerated expansion
of power generation from renewable sources has contributed most to the reduction of
emissions in the power sector since the share of renewable energy in global electricity
generation increased from 19% in 2010 to 29% in 2020 [10]. However, the share of renewable
energy in Mozambique, except for traditional hydropower, is still incipient. Despite the
global irradiation varying between 1785 and 2206 kWh·m−2·year−1 implying a significant
potential for solar photovoltaic (PV) generation estimated at 23 TWP [11], the realistic
potential capacity of solar energy in the country is estimated to be 2.5 GW [11,12]. Despite
the shock from the pandemic (2019–2021), the expansion of renewables accelerated in 2020
with an approximately 40% increase in their contribution to emissions reduction in the
power sector [13].
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Decarbonization has become a major issue alongside climate change and resource
depletion. To meet the increasing demand for energy sustainability, there is a fundamen-
tal need for greener and cheaper energy. Thanks mainly to renewable energy sources
(RES), electricity has the potential to become an important green, relatively cheap, and
powerful resource for future global development. However, providing electricity to rural
communities that currently lack access to it usually requires systematic planning to find the
cost-effective option between an extension of the existing grid and off-grid electrification
to serve every non-electrified community with the most economical solution [14]. Such
planning considers the availability of energy resources in each non-electrified rural area, as
well as a reasonable timeframe and cost for grid expansion. In this context, identifying the
most suitable locations is a crucial step in evaluating the feasibility and sustainability of
developing a solar PV microgrid solution for rural area electrification.

An accurate, systematic, and effective decision-making framework is an essential tool
to help policy and decision makers effectively plan strategies for solar PV microgrid siting,
taking into account not only technical and economic competitiveness but also socio-cultural
dynamics and environmental issues. It is well known that unsuitable locations can lead
to a waste of energy and resources and affect the community and the environment in a
harmful manner.

The scope of the present work is Mozambique. For energy planning problems, locating
suitable sites for solar energy generation is a complex process that confuses decision
makers [15]. In the case of a solar PV microgrid system, it is not only based on the
availability of solar resources, but a variety of factors that depend on the site selection.
However, selecting a site based on limited criteria can lead to the loss of opportunities for
sustainable solar energy generation and failure to meet the climate agenda and SDG#7 [16].
A good selection process requires a comprehensive analysis to evaluate various aspects
such as geographic, economic, social, technical, political, and environmental factors [17,18].
In fact, after reviewing the literature, many interesting studies have been found concerning
the identification of the most suitable location for the installation of a solar PV power plant.
Due to the complexity and several factors influencing the site selection, most studies have
referred to the multicriteria decision-making (MCDM) method as a modern approach that
is frequently employed in RES planning and policy and has higher accuracy compared to
other methods [16,19,20].

Due to the multidimensional nature of sustainability goals and the complexity of
environmental, technical, socio-economic systems, and institutional barriers involved in
the energy sector, MCDM methods have been increasingly applied to different types of
energy problems over the past four decades [21,22]. Moreover, choosing among available
solutions that are unidimensional (cost-benefit) is not always correct. Generally, the MCDM
problem for solar PV site selection implicates multiple alternatives that are evaluated based
on multiple criteria. Moreover, due to the lack of literature in the field of off-grid solar
PV microgrid system installation, the main motivation of this study is to determine the
importance of criteria that influence the siting of off-grid solar PV microgrid projects for
rural electrification in Mozambique through the application of MCDM methods. The
MCDM process generally involves six main phases [15,23]: the formulation of the alter-
natives (definition of the problem and the study area), the selection of the criteria, the
normalization of the data, the weighting of the criteria, the evaluation of the alternatives,
and the validation of the results. In fact, many studies have been published in the literature
concerning the application of multicriteria methods to support the decision-making process
and the identification of unsuitable and suitable sites for solar PV power plant deployment
and some are presented in the forthcoming subsection.

1.2. Related Work

Several works have proposed different solar PV site selection methods over the past
decade, including mathematical programming, feasibility studies, and MCDM techniques
to solve site selection problems [24,25]. On the other hand, given the fact that several
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criteria can influence site selection, geographic information systems (GIS) associated with
MCDM techniques have proven to be a useful tool, combining spatial information, criteria
weighting, and ranking to select a suitable location for solar energy plants [26]. In addition,
many other MCDM methods are processed using GIS, including the Analytic Hierarchy
Process (AHP) method based on the pairwise comparison, the Weighted Linear Combina-
tion (WLC), the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), the
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method based on scoring;
the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE),
the Elimination and Choice Expressing Reality (ELECTRE) outranking based methods, and
the fuzzy-based methods. In [27], it was shown that the use of several MCDM methods in
energy facility siting problems is beneficial because it can help decision makers select the
most sustainable sites while avoiding the drawbacks and taking advantage of the benefits
of each method. Table A1 in Appendix A summarizes the recently reviewed works divided
into single and hybrid MCDM approaches applied to solar PV site selection.

Saaty and Vargas’s AHP is one of the most widely used MCDM methods among ex-
perts for renewable and conventional energy planning, energy resource allocation, building
energy management, and electric utility planning [28,29]. In [30], AHP was used in the
ArcGIS environment to compute the geographical, techno-economic potentials, and site
evaluation for solar PV and CSP systems in Ghana and assessed suitability for 85% of the
land. In Egypt, Elboshy [31] used the AHP approach to enable and determine the weights
of the criteria and then aggregate them into GIS to produce the solar PV suitability map.
Similarly, Günen [32] combined AHP with GIS for solar farm site selection in Kahraman-
maras, Turkey. The main validation results show that the removed unsuitable areas are
close to and overlapped by the most very low suitable areas so that the suitable areas fall,
proving the consistency of the proposed framework (GIS-AHP-WLC). Ruiz [33], using
the same approach in Indonesia, found that only 34% of the area was available for solar
power plant construction when protected areas are considered. Using the same method,
Rios [34] found that Peru is unsuitable for large-scale PV projects (about 69.52%) due to its
location and ecosystem protection. Fang [35] used TOPSIS analysis to conduct solar site
selection in China. It was shown that the approach does not require much prior information,
which improves the efficiency and effectiveness of decision making. The proposed method
incorporates social criteria, which are usually ignored in many solar site selection rankings.

Several hybrid methods based on fuzzy logic, ranking, and outranking have been
proposed for integration into the MCDM framework to achieve optimal siting of photo-
voltaic systems. Recently, Villacreses [36] applied seven MCDM methods such as ARAS,
OCRA, PSI, SMART, WLC weighted superposition, TOPSIS, and VIKOR for the geolocation
of solar PV farms for a case study in Ecuador and found that the methods are highly
correlated. Heidary Dahooie [24] proposed an integrated MCDM framework of TOPSIS,
TODIM, WASPAS, COPRAS, ARAS, and MULTIMOORA ranking methods for solar site
selection in Iran. The results show a great improvement in removing the limitations of
non-combined methods. The authors in [20] proposed the MCDM model for the assessment
of large PV farms in Brazil, using gvSIG software, AHP, and TOPSIS for weighting and
ranking the alternatives. Kannan [25] developed a new hybrid approach based on BWM,
GRA, and VIKOR to select the best site for the construction of solar plants for sustainable
energy management in South Khorasan Province, Iran. With this approach, it was pos-
sible to obtain a global optimal weight of the final criteria using a linear mathematical
model without the personal preferences of the experts having any influence on the results.
Furthermore, in [37], the GIS-BWM-WLC approach was used not only for site selection
for solar PV power plant projects but also to determine the significance of each decision
criterion in site evaluation, with the best and worst criteria playing an important role in the
decision-making process.

The outranking methods are also used combined with GIS and AHP as a hybrid
approach, usually to compare the alternatives. In [38,39], the ELECTRE TRI method
combined with AHP and GIS was demonstrated to be a helpful method for multicriteria
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decisions, and it was designed specially to address classification or segmentation problems.
In [40], PROMETHEE and AHP methods were integrated with GIS to rank suitable areas
for solar farm development. The combination of AHP, ANP, and PROMETHEE methods
in [41] was useful to ensure the relationships among the several criteria.

The application of fuzzy logic in the MCDM framework for solar PV site selection
has led to higher accuracy and reliability of results. Noorollahi [29] used AHP, fuzzy
Boolean logic, WLC, and GIS to find suitable sites and estimate the PV power potential with
high accuracy. Similarly, Saraswat [42] used the fuzzy AHP and GIS combined with the
WLC approach to weight and rank the energy alternatives. AHP and fuzzy VIKOR were
combined to determine the optimal site selection for solar plants in Pakistan [43]. In this
study, a systematic research framework for comparative evaluation of potential PV cities
has been presented, which is able to deal adequately with shortcomings, uncertainties, and
inaccurate and vague data.

As previously mentioned, this study employs a method that combines AHP MCDM,
fuzzy logic, Boolean logic, and the WLC approach along with spatial analysis using GIS.
The reason for choosing this method is its ability to manage multiple conflicting decision
criteria and consider the preferences of multiple decision makers [29,30]. Additionally,
this method is also capable of decomposing a decision problem into a hierarchy of criteria
and sub-criteria with relative importance assessments, and the aggregation of subjective
judgments and preferences through a pairwise comparison matrix [31,36]. Furthermore,
the AHP method allows for sensitivity analysis, which allows decision makers to eval-
uate the robustness of their decisions under different scenarios and criteria weighting
schemes [32–34].

1.3. Contribution

In light of the above discussion, through a comprehensive and systematic review of
the literature in the research areas and MCDM approaches for solar PV power plant site
selection, it can be concluded that there is a lack of studies on the selection of suitable sites
for the installation of solar technology based on off-grid mini-grids and/or microgrids,
especially in countries with habitable rural areas scattered from each other, low population
density, and predominantly low-income, which is the case of rural areas of Mozambique. In
addition, only a few studies in the literature have begun to address social and institutional
considerations in real-site selection processes using MCDM [44–46]. These social and
institutional gaps are based on the flawed assumption that abstract support for the general
idea of renewable energy should be positively associated with support for local renewable
energy projects, regardless of other contextual factors [47]. Thus, the main contributions of
this work are the following:

• This study provides a systematic and effective framework for prioritizing the factors
influencing site selection for off-grid solar PV microgrid projects.

• This study presents the integration of social and institutional criteria in a GIS-MCDM-
based framework for site selection for off-grid solar PV microgrid projects. This
research is the first contribution in this direction.

• This study is unique in terms of suitable site selection for the installation of off-grid
solar PV microgrid projects in Mozambique.

• This study presents a useful decision support tool to help decision makers prioritize
suitable sites for off-grid solar PV system deployment in Mozambique, which satisfies
environmental, climatic, orography, social, institutional, location, and technical criteria.

1.4. Paper Organization

The remainder of this paper is structured as follows. Section 2 presents the proposed
overall methodological framework for sustainable site selection for rural electrification and
energy access, namely presenting the GIS integration strategy with AHP, Fuzzy logic, and
Boolean logic methods for selecting suitable sites. Section 3 describes the results achieved
with the implementation of the proposed framework methodology, where Mozambique was
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selected as the study area to validate the new framework. Section 4 presents a discussion of
the results. Finally, Section 5 presents the conclusion of the current research, the limitations
of the applied framework, and provides suggestions for future studies.

2. Materials and Methods

After the literature review, this section presents the stages of the research methodology
and explains in detail the methods, materials, and instruments used, as well as their
applicability. To identify the suitable locations for off-grid solar energy installation in
Mozambique, GIS is used with the MCDM approach, which is described in detail in the
following section.

2.1. Proposed Methodology

2.1.1. Development of Criteria Maps and Restriction Factors

The Geographic Information System (GIS) running on ArcGIS 10.8 from the Envi-
ronmental System Research Institute (ESRI), which is one of the remote infrastructure
platforms that combines software, hardware, geo-referenced data, storage, management,
calculation tools, and maps, has advanced and unique capabilities and flexible technologies
for location-based analysis and visualization and processing of real geographic data to
assist planning and decision making. The GIS-MCDM methodology includes geographic
extent definition and information collection, factor standardization, scale and resolution
definition, information rasterization, scale standardization and homogenization, and over-
laying of maps leading to the selection of areas with high potential and exclusion of areas
without the potential for solar PV microgrid development [40]. Moreover, the power of
overlay analysis is combined with the MCDM approach to achieve faster and more reliable
results in spatial analysis, using multiple map layers to integrate and evaluate seemingly
conflicting criteria and produce map-based results as well as a decision support tool to
resolve MCDM problems such as site selection and suitability modeling combining overlay
analysis with the WLC method.

2.1.2. Restrictions Factors and Areas

There are some constraints that represent the technical and environmental restrictions
of the studied area, which were established according to the literature, study objectives,
and current legislation (urban areas, agricultural areas, flood and cyclone areas, airports,
special protection areas, etc.) in order to identify not suitable and very less suitable
locations for the installation of off-grid solar PV microgrids and consequently to reduce
the study area by eliminating these areas where solar projects are given less priority. After
identifying these restriction factors and layers, a suitable buffer zone corresponds to the
study areas that should not be considered. The restriction factors and areas for this study
were identified based on the study objectives, literature review [48,49], and applicable
national regulations [50,51].

To increase the reliability of the suitability map, the restriction layers included addi-
tional buffer zones immediately adjacent to their boundaries. The extent of these zones
was selected based on a conservative analysis, information availability, and the available
geo-referenced databases. Map normalization was performed through the reclassification
process and the determination of the lowest suitable and constrained areas was performed
using Boolean logic. Finally, a calculation and weighted overlay mapping of the lowest
suitable and constrained areas were generated by applying the WLC approach, where the
value of each pixel is one for permitted areas or zero for non-feasible areas.

2.1.3. Criteria and Sub-Criteria Selection

Once the incompatible areas are identified, the compatible areas must be ranked
according to their suitability for solar PV microgrid installation. This stage is one of
the most important issues in the MCDM, namely the selection, weighting, and ranking
of appropriate criteria to determine suitable locations for solar PV power plants. This
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depends on a complete and accurate understanding of the criteria and how they are
selected considering the defined objective, study area, accessibility of datasets, and spatial
scale. The criteria and sub-criteria selected in this study are based on a thorough and
comprehensive literature review, surveys, and expert opinions. For rural electrification
of developing countries through off-grid solar PV microgrid projects, the current study
selected criteria that are relevant and can be processed, evaluated, and modeled according
to six main categories: technical, climatological, orographic, social, institutional, and
environmental criteria.

2.1.4. Criteria Layers Normalization and Standardization

Normalization and standardization of layers are the most important steps in the
process of site selection. A fuzzy logic standardization approach will allow a more flexible
analysis for decision-making, where there are no certain boundaries between suitable and
unsuitable. Linear (ascending and descending), triangular, and trapezoidal functions were
used for the fuzzification of the criteria layers, as shown by the equations presented in
Table 1 [29,52]. For this study, for each map, the fuzzy value corresponding to each pixel
was computed using the corresponding fuzzy membership function. For each criterion
considered, the values of a cell in the fuzzy map indicate the degree of suitability of the cell
concerning that criterion. The selection criteria were standardized by the respective fuzzy
membership functions and thresholds considering the objective and field of study.

Table 1. Fuzzy membership functions [29,52].

Function Mathematical Equation Fuzzy Function

Linear ascending (LA) µ(x) =







0 x ≤ a
x−a
b−a a < x < b

1 x ≥ b





𝜇(𝑥) = 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏1 𝑥 𝑏
 

 
 

𝜇(𝑥) = 1 𝑥 ≤ 𝑎𝑥 − 𝑏𝑎 − 𝑏 𝑎 < 𝑥 < 𝑏0 𝑥 𝑏
Linear descending (LD) µ(x) =







1 x ≤ a
x−b
a−b a < x < b

0 x ≥ b







𝜇(𝑥) = 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏1 𝑥 𝑏

𝜇(𝑥) = 1 𝑥 ≤ 𝑎𝑥 − 𝑏𝑎 − 𝑏 𝑎 < 𝑥 < 𝑏0 𝑥 𝑏
 

 

Triangular (TR) µ(x) =















0 x ≤ a
x−a
b−a a < x < b
c−x
c−d b ≤ x ≤ c

0 x ≥ c















𝜇(𝑥) = ⎩⎪⎨
⎪⎧ 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏𝑐 − 𝑥𝑐 − 𝑑 𝑏 ≤ 𝑥 ≤ 𝑐0 𝑥 𝑐 ⎭⎪⎬

⎪⎫  

 
 

𝜇(𝑥) =
⎩⎪⎪⎨
⎪⎪⎧ 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏1 𝑏 ≤ 𝑥 ≤ 𝑐𝑑 − 𝑥𝑑 − 𝑐 𝑐 < 𝑥 < 𝑑0 𝑥 𝑑 ⎭⎪⎪⎬

⎪⎪⎫
Trapezoidal (TZ)

µ(x) =























0 x ≤ a
x−a
b−a a < x < b

1 b ≤ x ≤ c
d−x
d−c c < x < d

0 x ≥ d























𝜇(𝑥) = ⎩⎪⎨
⎪⎧ 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏𝑐 − 𝑥𝑐 − 𝑑 𝑏 ≤ 𝑥 ≤ 𝑐0 𝑥 𝑐 ⎭⎪⎬

⎪⎫

𝜇(𝑥) =
⎩⎪⎪⎨
⎪⎪⎧ 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏1 𝑏 ≤ 𝑥 ≤ 𝑐𝑑 − 𝑥𝑑 − 𝑐 𝑐 < 𝑥 < 𝑑0 𝑥 𝑑 ⎭⎪⎪⎬

⎪⎪⎫
 

To achieve the goal of spatial planning for solar PV microgrids in rural areas, it is
necessary to evaluate the areas using a mathematical model. Because the different layers
have different ranges, units, and information, the mapping layers of each criterion and
the values of the sub-criteria must be converted into a common scale and unit so that they
can be entered into the GIS database. In this way, a reclassification process that allows
assigning criteria values to a raster map to create a common scale of values must be used.
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2.1.5. Evaluation of the Weights of the Criteria

The Analytic Hierarchy Process (AHP) is a well-known form of the MCDM method
that provides objective mathematics and logic for processing the inescapably subjective and
personal preferences of an individual or group and can serve as a tool for solving decision
problems in energy planning and location of RES, using a multi-level hierarchical structure
for process evaluation in conjunction with GIS analysis. It was originally developed by
Prof. Thomas L. Saaty in 1977 [53,54] and has the ability to include both qualitative and
quantitative factors, and it gives simplicity for implementing the decision factors in the
pairwise comparison matrix. The implementation of the AHP is based on three basic
principles: (i) determining the problem structure as a hierarchy of goals, criteria, and
alternatives; (ii) conducting a comparative decision-making preference matrix of criteria
and alternatives at each level of the hierarchy (aggregation of expert judgments in a pairwise
comparison matrix and inconsistency check); and (iii) determining the factor weights and
analyzing the results. The extracted weights for the same hierarchy should sum to 1
(100%) [53,54]. These principles can be further elaborated by structuring them into a more
comprehensive step process, as shown in Figure 2.

𝜇(𝑥) =
⎩⎪⎪⎨
⎪⎪⎧ 0 𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏1 𝑏 ≤ 𝑥 ≤ 𝑐𝑑 − 𝑥𝑑 − 𝑐 𝑐 < 𝑥 < 𝑑0 𝑥 𝑑 ⎭⎪⎪⎬

⎪⎪⎫

 

Figure 2. Flowchart of the Analytic Hierarchy Process (AHP) method.

According to the flowchart of the AHP (Figure 2), the formulation of the decision
problem in the form of a hierarchy framework is the first step of the decision-making
method, with the top level representing the goal or objective. At the middle levels, there
are the identification and selection of criteria and sub-criteria, and the decomposition of the
problem into a systematic hierarchical structure, with the model of decision alternatives
as a result. Once a hierarchy framework is established, the pairwise comparison matrix
is created using empirical information and data that represent the judgments of decision
makers and experts when comparing the importance of each indicator relative to all other
indicators. A scale of 1 to 9 was used to describe the intensity or degree of importance
of the compared criteria. Here, the value of 1 for “equal importance” and 9 for criteria
with “extreme importance” relative to the other criteria was used to form the pairwise
comparison matrix, as shown in Table 2 [53,54]. The consistency check was performed
to ensure that conclusions were consistent. If the accuracy ratio is found to exceed the
threshold (10%), the pairwise comparisons should be reviewed and updated by the decision
makers. Finally, in the prioritization phase of synthesis, each comparison matrix was solved
by computing an eigenvector value to prioritize the rating of each parameter (criteria and
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sub-criteria) and the performance of the alternative. The procedure can be summarized
as follows:

Table 2. Saaty’s scale for pairwise comparison [53,54].

Score of Criteria i

to Criteria j(cij)
Definition

1
Equal importance (factors i and j are of equal importance); two requirements contribute equally to

the objective

3
Moderate importance of one over another (factor i is slightly more important than j); experience

slightly favors one requirement over another

5
Essential or strong importance (factor i is moderately more important than j); experience strongly

favors one requirement or activity over another

7
Very strong importance (factor i is strongly more important than j); a requirement is strongly favored

and its dominance is demonstrated in practice

9
Extreme importance (factor i is extremely more important than j); the evidence favoring one activity

or requirement over another is of the highest possible order of affirmation
2, 4, 6, 8 Intermediate values between the two adjacent judgments; this is when compromises are needed

Reciprocals
If activity i has one of the above numbers assigned to it when compared with activity j, then j has the

reciprocal value when compared with i

Rationals
Ratios arising from the scale-if consistency were to be forced by obtaining n numerical values to span

the matrix

An online questionnaire was created to evaluate and determine the importance of the
criteria for the site selection of off-grid PV microgrid projects. The survey was submitted
to 16 experts who have knowledge, skills, and expertise in the field of solar energy in
Mozambique (academia, regulators, and the public and private sectors). The experts were
asked to indicate the importance of all factors in the indicated range for each factor accord-
ing to Saaty’s scale (Table 2) and collected in terms of pairwise judgments [53,54]. Email
invitations were sent for the online questionnaire, which was completed via Google Forms.

The geometric mean method (GMM) was used to consolidate or aggregate the 16-
expert judgments. It was performed using the SpiceLogic AHP Software [55]. Moreover, the
GMM was chosen because it preserves the reciprocal property of combining judgments [56].
For n number of members, aggregation of individual decisions using GMM is given by
Equation (1) [57,58].

cG
ij =

n

√

n

∏
k=1

ck
ij, k = 1, . . . , n (1)

where cG
ij is the group decision for criterion i with criterion j; ck

ij is the decision of individual

k for criterion i with criterion j.
Given a finite set M = {c1, . . . , cn} of alternatives, the pairwise comparisons of the

alternatives are collected into a judgment matrix M (size n × n), where n is the number of
elements to be evaluated. The pairwise comparison matrix M =

[

cij

]

is constructed for
the lower levels with a matrix in the level immediately above, as shown in Equation (2),
where each element (i, j = 1, . . . , n) represents the measure of the criteria weights. In
other words, the AHP method uses a pairwise comparison between multiple criteria to
construct the matrix M. Each entry scale (cij) in the comparison matrix represents the
decision maker’s rating of the relative importance or degree of preference of criterion i over
j among two criteria based on the Saaty’s scale mentioned in Table 2. The structure of a
pairwise comparison matrix of order n is as follows in Equation (2):

M =
(

cij

)

n×n
=











c11

c21
...

cn1

c12

c22
...

cn2

. . .

. . .
. . .

. . .

c1n

c2n
...

cnn











, cii = 1, cij = cij
−1, cij ∈ R

+, ∀i,j = 1, . . . , n (2)
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The value of cij > 1 represents higher importance for i criterion over the j crite-
rion, whereas cij < 1 specifies the lower importance of i criterion over the j criterion. In

other words, transposed elements are positive reciprocals cij < 1 ⇔
(

cij
−1

)

. The value
cii = 1 ⇔ cij = cji = 1 when both i and j criteria have the same relative importance. How-
ever, each entry cij in the matrix M must comply with the reciprocal condition mentioned
in Equation (3) [59].

If Equation (2) is satisfied, then M is called a consistent multiplicative reciprocal
preference relation.

cij=cik × ckj, ∀i,j,k = 1, . . . , n (3)

To establish a normalized pairwise comparison matrix (
−
M) from M:

i. Divide each entry (cij) in each column of matrix M by its column sum to create

normalized pairwise comparison entries (
−
cij) as defined in Equation (4). The matrix

becomes a normalized comparison matrix (
−
M = [

−
cij]).

−
cij =

cij

∑
n
l=1 cij

(4)

ii. Each (
−
cij) should be in a way that the sum of each column in

−
M must be equal to 1.

iii. Calculate the vector for the evaluation-criteria weight (W) or eigenvector using Equa-
tion (5). The normalized principal eigenvector (priority vector) is obtained by the

average of each row of the last normalized matrix (
−
M).

W =
∑

n
l=1

−
cij

n
(5)

Because comparisons are made through the inescapably subjective and personal
preferences of an individual or group, a reasonable degree of inconsistency is expected and
therefore tolerated in all comparisons. Moreover, people’s decisions and preferences are
sometimes intransitive and inconsistent, which can cause interference in the calculation of
the criteria eigenvector. A consistency check should be performed to hedge judgments and
verify the consistency of the calculated weighted values.

The consistency-ratio (CR) is regarded as one of the most advantageous features of
the AHP method [60] and is incorporated to measure the degree of consistency among the
pairwise comparisons by computing the CR. The weights are consistent when the resultant
of CR is less than 10% [54]. The CR is estimated as follows:

i. Firstly, the maximum or largest eigenvalue λmax for each cij matrix is obtained
following Equation (6).

λmax =
MW

Wi
, ∀i = 1, . . . , n (6)

ii. Equation (6) is used to calculate the consistency index CI.

CI =
λmax − n

n − 1
(7)

iii. Finally, the CR is calculated using Equation (7).

CR =
CI

RI
, 0 ≤ CR ≤ 0.10 (8)

RI is the random consistency index of the matrix M and can be estimated from the
literature [53,54] as a function of the value n given in Table 3. The result of the pairwise
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comparison is sufficient if the CR value is equal to or less than 0.10 (≤10%). Otherwise, the
steps need to be repeated according to the AHP flowchart in Figure 2.

Table 3. Saaty’s random index for different values of the number of criteria [53,54].

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

2.1.6. Determination of the Suitability Map Ranking

The weighted linear combination (WLC) approach is the widely used method in GIS-
MCDM problems for renewable energy site selection [23,29]. To obtain the final suitability
maps index of rural areas, a WLC approach uses the overlay analysis function of the
ArcGIS environment, which combines the algebra toolset, the previous fuzzy standardized
raster layer, the weighted AHP criteria, and the sub-criteria as a simple and accurate
statistical method to produce the suitability index maps, where each grid cell in the fuzzy
standardized score layer (X) of a grid cell j under criterion i is multiplied by a relative
weight (w) assigned to that layer or criteria and sub-criteria i, and n is the total number
of weighted evaluation criteria. Finally, the results are summed to produce the initial
suitability index grid cell (SI) weighted sum model (WSM) (Equation (9)) [49].

SI(WSM) =
n

∑
i=1

wiXij (9)

To exclude unsuitable sites, a Boolean constraint is applied to each grid cell by multi-
plying the initial suitability maps by the product of the binary constraint maps, SI weighted
product model (WPM) (Equation (10)) [49]. As a result, the locations corresponding to each
pixel B = 1 derived from Boolean logic approach in the final restriction map corresponding
to permitted areas, and B = 0 for non-potential areas.

SI(WPM) =
n

∏
i=1

Bij

n

∑
i=1

wiXij (10)

2.2. Study Area

Rural areas in Mozambique were selected as the study area because 63% of the total
population lives in this region and the electrification rate remains very low. This is mainly
due to the lack of basic infrastructure as well as the high cost of expanding the electricity
grid and the low ability and willingness to pay for energy services [61]. As previously
mentioned, due to constraints and the need to democratize, digitalize, and decarbonize the
energy sector, cost-effective, socio-economic, and socio-environmental solutions are needed
to achieve SDG#7 and meet the climate agenda in sub-Saharan Africa.

The area considered in this study (Figure 3) is located on the east coast of south-
ern Africa, between the parallels 10◦27′ north and 26◦52′ south and between meridi-
ans 30◦12′ east and 40◦51′ west, with a coastline of about 2700 km and a total area of
801,509 km2. Topographically, Mozambique is divided mainly into mountainous and hilly
regions (in the north and west of the country) with high altitudes, plateaus in the center, and
parts of the south characterized by vast coastal alluvial plains. The state borders Malawi,
South Africa, Swaziland, Zambia, and Zimbabwe. A long stretch of the Rovuma River
forms the border with Tanzania to the north. Part of the northwestern border runs through
Lake Nyasa. Mozambique also shares maritime borders with Comoros, Madagascar, and
the island of Mayotte. Administratively, Mozambique is divided into 11 provinces, which
in turn are subdivided into 161 districts, 408 administrative divisions, 1132 localities, and
53 municipalities [62].
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Figure 3. The geographical and spatial position of the study area.

Mozambique has a variety of warm subtropical and tropical climates with two seasons,
a wet or summer season and a dry or winter season. The average annual temperature
ranges from 20 to 22 ◦C in the winter months (May to September) to 24 to 26 ◦C in the
summer months (October to April). Precipitation is more abundant in the central and
northern regions of the country, with values ranging from 800 and 1200 mm per year. The
average annual sunshine duration is up to 2760 h with global irradiation between 1785 and
2206 kWh·m−2·year−1, which corresponds to an estimated potential of 23 TW. Such high
sunshine duration and solar irradiation imply that Mozambique has extensive potential
to develop solar energy. However, Mozambique’s geographical location poses enormous
challenges for establishing energy investment projects due to its particular characteristics
and vulnerability to flooding and tropical cyclones [63]. Therefore, it is necessary to provide
specific and systematic information for the selection of sites for solar technologies according
to the location, and climatic, economic, social, political, orographic, and environmental
conditions of the country.

2.3. Framework Overview for Site Selection of Solar PV Microgrid Deployment

Figure 4 presents the proposed framework methodology with an overview of the
implementation and integration of GIS and MCDM methods. The framework includes
the following steps: (1) The first step is to determine the constrained and lowest suitable
areas where the restriction factors are defined using the georeferenced database and maps.
Twelve data layers were identified and used to analyze the unfavorable areas. (2) Nineteen
sub-criteria layers were selected based on the study objective, resulting in five main criteria
layers. (3) The commercial computer software ArcGIS 10.8 from the Environmental System
Research Institute (ESRI) was used to calculate and map the regulated buffer zones for
unfavorable and favorable areas by performing buffer analysis. (4) The Boolean logic
perspective was used to identify and map the constrained zones. (5) The reclassification
process was used to normalize and reassign new output values to the data layers of the
constrained and sub-criteria maps. (6) The WLC approach was used to create the final
restriction map of the study area by calculating and overlaying the raster layers. (7) The
fuzzy logic approach is used to standardize the different sub-criteria maps and layers. The



Energies 2023, 16, 2894 13 of 41

AHP approach was used to assign weights to each suitability criterion and rank them based
on the literature review and expert judgment. (8) The ArcGIS tools were then used to
generate suitability maps by applying the weighted sum-overlay approach of the WLC.
After applying the proposed approach to generate the suitable and not suitable maps
according to the different criteria and constraintsthe WLC approach was used to create
and rank the final suitability map. (9) A theoretical potential assessment was conducted,
first considering five suitability scales (high suitable, suitable, moderately suitable, low
suitable, and constrained and lowest suitable areas), using the established suitability
framework [49,64]. Finally, the potential areas in different rural areas were explored in
terms of universal access to modern energy in Mozambique.

 

Figure 4. A framework for the proposed methodology.
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3. Results

3.1. Existing PV Solar Power Plants in Mozambique

As in many developing countries, rural electrification in Mozambique began with the
extensive use of diesel generators to provide electricity to remote communities [65]. Later, in
1997, the government established the FUNAE to provide off-grid solutions, including micro-
and mini-hydropower plants, and solar PV micro and mini-grids for the electrification of
rural areas [66]. This fund is in line with the national electrification strategy, which aims to
expand access to electricity for all by 2030. On the other hand, grid-connected projects are
entrusted to the state-owned electricity company EDM, which also has exclusive rights to
operate and expand the existing electrical infrastructure for generation, transmission, and
distribution, as well as to supply electricity to consumers at the national level.

Figure 5 shows the existing energy infrastructure in Mozambique. Based on the
available data sources from the first half of 2022 (FUNAE online map of implemented
mini-grid projects, EDM reports, and statistics), PV mini-grids (with capacity from 4 kW to
550 kW) and 3 large PV power plants (with capacity from 30 MW to 41 MW) were identified
and harmonized in a new and single geodata layer. The existing solar power infrastructure
was combined with additional spatial information on the existing power grid and the
extent of human settlements to illustrate the current status of rural electrification of each
settlement by solar power sources. However, the methods for prioritizing and validating
off-grid solar projects still lack a multicriteria analysis to make them sustainable in the
short, medium, and long term.

 

Figure 5. Existing energy infrastructure in Mozambique (solar power stations and existing network)

and human settlement extents.
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3.2. Data Collection and Map Layers Development

To create the required map of sites suitable for PV microgrid projects in Mozambique,
geospatial information and attribute data were collected from secondary sources to cover
the various criteria and constraints selected for this case study. Each of the raw spatial
data of thematic layers listed in Table 4 represents specific georeferenced cartographic
information of the studied areas of the Mozambican territory (see Figure 4). Then, the
original layers were processed with the ArcGIS tools in suitable formats that can be imme-
diately integrated into the Boolean logic, fuzzy logic, and the AHP model to perform the
spatial analysis.

Table 4. Collected data sets to identify suitable sites for the installation of solar PV microgrids.

Source Subject Description Format Resolution

[67] Solar irradiation Long-term yearly GHI (kWh·m−2·year−1) Raster 25 m × 25 m
[67] Temperature Yearly temperature at 2 m above ground (°C ) Raster 25 m × 25 m

[68]
Relative

humidity
The average relative humidity over one year. Raster 83 m × 83 m

[69] Precipitation
Data set from classification System (PERSIANN-CCS) satellite

precipitation (mm.year−1)
Raster 4 km × 4 km

[70] Wind speed
The mean wind speed in m·s−1 measured at 10 m high above the

ground level
Raster 13 m × 13 m

[71] Slope Reclassified Shuttle Radar Topography Mission (SRTM) 30 m Raster 30 m × 30 m

[71] Elevation
Digital Elevation Model (DEM) from SRTM; 30 m image elevation

above sea level
Raster 30 m × 30 m

[71] Aspect Reclassified SRTM 30 m images Raster 30 m × 30 m
Agriculture

areas
Land use for farmland, farmyards and orchards Vector -

[51,72] Protected areas
Protected Areas and other effective area-based conservation

measures
Vector -

[73] Inland water
Groundwater and surface water in a given land area (including

lakes, rivers, and canals)
Vector -

[74] Flood areas Qualitative classification of flood Vector -
[75–77] Cyclone zones Cyclone hazard (idai, kenneth, gombe, eloise, and dineo) Vector -

[78]
Electricity

Transmission
Network

Existing transmission and distribution infrastructure Vector -

[79] Roads
Road attributes: highway, primary, secondary, and tertiary roads,

arterial and residential streets
Vector -

[80] Railways Existing railways Vector -
[81] Airports Existing airports Vector -
[82] Major cities Mozambique administrative areas Vector -

[83]
Population

density
The dataset of spatial distribution of population density at a

resolution of 30 arc
Raster 100 m × 100 m

[84]
Settlements and
built-up areas

Human settlement based on the presence of buildings detected in
satellite imagery

Vector -

3.3. Restrictions Factors

Restriction maps and factors related to the study areas help to map and identify areas
that are not suitable and prohibited for the installation of solar PV microgrids projects to
ensure that the project does not negatively impact the environment, agriculture, or local
communities while meeting the study’s objectives for selecting optimal sites in remote rural
off-grid areas. To obtain these maps, appropriate geographic input layers and buffer zones
for each restriction and exclusion zone were constructed as indicated in Table 5, considering
the current literature, the nature of the study area, the objective, and expert opinions in
the field of energy planning, and the experience of the authors. Furthermore, no policy
and legal restrictions on the construction of solar power plants in Mozambique have been
identified. The following sections explain the adopted buffer zones and threshold values,
restriction factors, and exclusion zones. Table 5 presents the threshold values used for
excluded and selective factors in the study case.
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Table 5. Buffer zones and threshold values used in the spatial analysis for off-grid solar PV micro-

grid siting.

Ref. Factor Restriction Factors Units Threshold

[49]

Climatology

Solar irradiation kWh·m−2·year−1 <1461
[48] Temperature ◦C <3 and >27

[32,85] Relative humidity % >65
[86] Precipitation mm <20

[42,87] Wind speed m·s−1 <1.5

[18,48]
Orographic

Slope % >10
[88] Aspect (orientation of PV panels) - =True north

[43,48] Elevation m >1500

[48,49]
Environmental

Agriculture areas m <500
[48,49] Protected areas m <500

[49,89]

Locational

Inland water bodies m <500
[48] High flood risk zone m <1000

[75,77] High cyclone risk zone m <1000
Electricity transmission network m <3000

[90] Roads and railways m <500
Major cities m <40,000

[90] Airports m <3000
[91] High population density people·km−2 >350
[48] Settlement areas m <2000

Climatology factors: These play an important role in determining the technical and
economic viability of a solar PV microgrid. In order to ensure the best possible performance,
factors such as solar irradiation, temperature, humidity, precipitation, and wind speed
must be considered. Therefore, off-grid sites with an average annual solar irradiance
of less than 1461 kWh·m−2·year−1 (4 kWh·m−2·day−1) are not considered suitable for
the installation of a solar PV microgrid [49]. Areas with values greater than 27 ◦C [48],
60% [32,85], and 20 mm [86] for annual average temperature, relative humidity, and
precipitation, respectively, were also considered very less suitable, and values of less than
1.5 m·s−1 [42,87] for wind speed at 10 m height above the ground level were considered
very less suitable. All these factors affect the PV system’s solar energy conversion and
electricity output.

Orographic factors: The elevation, slope, and aspect increase land use capacity and
ensure economic viability for off-grid solar energy projects. In this study, sites with slopes
greater than 10% [18,48] are classified as very less suitable areas for solar PV microgrid
installation. Similarly, the elevation in the spatial model is of technical and economic
importance and values above 1500 m [43,48] are classified as extremely high altitudes and
very less suitable areas due to the high cost of construction and operation of the system in
these areas, despite low temperatures, high irradiation, and humidity that positively affect
the PV efficiency. Moreover, the recommended orientation (aspect) for the installation of
solar PV panels in Mozambique is towards the north, as this orientation is considered the
most favorable for maximizing solar energy conversion and electricity output [88].

Environmental factors: Solar PV projects should use low-value land. Agriculture and
protected areas are considered exclusion areas to preserve agricultural production and
avoid interference with the natural environment, national parks, and ecological reserves.
After reviewing the regulations and previous studies conducted in Mozambique, this study
assumes a buffer of 500 m for the development of solar PV microgrids [48,49,51].

Locational factors: These have economic and risk implications for solar PV microgrid
projects and help identify a potential rural area for system development. To identify an
off-grid and rural area, regions that are far from the electricity transmission network, areas
with low population density, near roads and railways, far from airports, inland waters, and
flood and cyclone areas are considered. Based on the data from various literary works,
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a significant buffer zone with a 3 km radius around all electricity transmission networks
and airports should be considered for off-grid solar PV systems [48,49,89]. In addition,
areas with a population density of more than 350 people·km−2 (major cities, suburban, and
urban areas) are considered very less suitable areas [91], and a 2 km radius buffer zone
around settlements is adopted in view of negative social–environmental hazards such as
ecosystem impacts and visual pollution, as well as a favorable buffer distance to ensure
safety conditions [48]. In addition, good and easy accessibility to main roads and railways
has an impact on the economic viability of solar PV projects. Therefore, a buffer zone
of 500 m around the main roads and railways was considered [90]. Mozambique has a
large number of inland water bodies (rivers, lakes, and water bodies). To protect water
resources from pollution and avoid adverse impacts such as flooding, a buffer radius of
1 km around high-risk floodplains was considered. In addition, to prevent adverse effects
and any destruction of solar PV power plants, a buffer zone of more than 1 km to the
high-risk areas for cyclone zones is defined [75,77].

3.3.1. Constraint and Not Suitable Area Maps

The Spatial Analyst Toolbox of ArcGIS 10.8 software was used to systematically filter
out areas where energy resources are technically unsuitable. For each reference layer, the
buffer zone distance (see Table 5) was applied using ArcGIS’s buffer tool. Values of 0 are
assigned for unsuitable sites (forbidden zones) and 1 for feasible sites (permitted zones)
for solar PV projects in Mozambique and then converted to a raster format. The restriction
layers are presented in Figures A1 and A2 in Appendix B.

3.3.2. Final Restriction Areas

All restriction layers were normalized using the reclassification process and Boolean
logic and overlaid using the WLC approach. All restriction layers were considered with the
same percentage influence in the weighted overlay to create the overall binary restriction
map (exclusion and lowest suitable areas), which was classified as the lowest suitable
and removed from the final suitability map to increase and ensure the accuracy of the
site selection for off-grid solar PV microgrid projects. Figure 6 shows the final map of
unsuitable and lowest suitable areas. The constrained areas with the restriction masks for
off-grid solar PV microgrids constitute roughly 51% (387,005.24 km2) of the total land area
of the study area. Most of the restricted sites for off-grid PV microgrid projects belonged
to nature reserves and protected areas (prohibited areas), which were responsible for 34%
(131,581 km2), followed by the high flood risk areas in the southern and central regions and
the cyclone areas in the central and northern regions, which were responsible for 16% and
7%, respectively. Additionally, a large part of inland waterways was classified as restricted,
which accounted for 3%, as well as the total area of power transmission networks, which
accounted for 5% of the country’s total area, which are constrained and lowest suitable
areas for the installation off-grid solar PV microgrid.

3.4. Standardization and Evaluation of Criteria Using Fuzzy Functions

After reclassifying the raster map based on the boundary parameters, threshold value,
and buffer zones, a fuzzy logic approach was used in each map to standardize the scale
and fuzzify each pixel using the fuzzy membership function (see Tables 1 and 6). The
raster maps were evaluated from zero (not membership) to one (full membership degree)
to indicate the degree of suitability of the cell. Therefore, linear ascending or increasing
fuzzy membership functions (MFs) were used in this study for the sub-criteria of solar
irradiation, major cities, and electricity transmission network.
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Figure 6. The final map of constrained and lowest suitability areas for off-grid solar PV microgrid

sites in Mozambique.

The sub-criteria slope, elevation, precipitation, and population density are charac-
terized by linear descending MFs. Temperature and distance from roads, railways, and
airports, which are criteria characterized by triangular MFs, were established as their lower
and the upper boundary were assigned a value of 0, and the middle or highest region was
assigned a value of 1. In addition, triangular membership functions (MFs) were established
for this sub-criteria. This sub-criteria affects the efficiency and economic viability of PV
projects in certain distance and temperature ranges. The ranges include: first extreme
base points to buffer distance, abscissa value to optimal distance, and second extreme base
points to non-optimal distance. The temperature ranges include: first extreme base point
of −3 ◦C, abscissa value of 25 ◦C, and second extreme base point of 27 ◦C. These ranges
and MFs are shown in Table 6. Finally, trapezoidal MFs were defined for relative humidity,
wind speed, distance from inland waters, and settlements. In addition, the trapezoidal
function for the sub-criteria was determined based on the efficiency and techno-economic
viability of PV projects in specific distance ranges, weather conditions, and locations.

The results of the fuzzification process for each climate criterion as a raster layer are
shown in Figure A3 in Appendix B. The pixel suitability of the study area was ranked in
the maps from low-scoring areas (zero) to high-scoring areas (one). It is important to note
that the raster map of solar irradiation, shown in Figure A3a, has values higher than the
minimum solar irradiation recommended for the technical–economic feasibility of solar
projects across the country (<4 kWh·m−2·day−1). The average temperatures in the center
and northwest are more appropriate than the average temperatures in the rest of the country
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(Figure A3b). Nevertheless, the country has minimum and maximum average temperatures
that can be considered reasonable for the efficient operation of solar PV systems.

Table 6. Membership functions for each criterion standardization for Mozambique’s off-grid solar PV

microgrid site selection.

Criteria Sub-Criteria Units 1 MF
Boundary

a b c d

Climatology

Solar Irradiation kWh·m−2·year−1 LA 1460 2 Max. - -
Temperature ◦C TR 3 25 27 -

Relative humidity % TZ 61 63 65 80
Precipitation mm LD 20 2000 - -
Wind speed m.s−1 TR 1.5 4 6 15

Orography
Slope % LD 3 Min. 10 - -

Aspect - LA Flat North - -
Elevation m LD 3 Min. 1500 - -

Technical and
Location

Distance from inland water m TZ 500 12,000 65,000 85,000
Distance from the electricity transmission grid m LA 20,000 2 Max. - -

Distance from railways m TR 500 100,000 225,000 -
Distance from roads m TR 500 15,000 100,000 -

Distance from airports m TR 3000 115,000 205,000 -
Distance from major cities m LA 40,000 2 Max. - -

Population density people·km−2 LD 3 Min. 350 - -
Distance from settlements m TZ 2000 4000 8000 100,000

Social
Job opportunities index LD Low High - -

Energy justice and equity index LD Low High - -
Human Development Index index LD Low High - -

Institutional National rural electrification plan existence LD 3 Min. 2 Max. - -

1 Membership function (MF): Linear ascending (LA), Linear descending (LD), Triangular (TR), and Trapezoidal
(TZ). 2 Max. (Maximum value in the map). 3 Min. (Minimum value in the map).

The wind speed required to avoid dust and cool the solar PV panels, thereby increasing
the performance of PV systems, is more prevalent in the southern region, Tete province in
the center, and provinces in the coastal regions (Figure A3c) In general, the percentage of
relative humidity is higher in the eastern region than in the rest of the country, indicating
that these regions are less suitable for the implementation of PV microgrid projects because
a lot of moisture can penetrate into the PV cells through the cracks, resulting in a loss of
solar radiation energy and reduced solar cell productivity due to absorption or reflection
by the water layer (Figure A3d). The minimum annual precipitation required for regular
cleaning of PV modules has been verified in all regions and is considered more favorable in
the southern region and less favorable in some specific regions in the central and northern
parts of the country (Figure A3e).

The fuzzy raster map of orography criteria in Figure A4 in Appendix B indicates that
Mozambique has good topographical conditions (Figure A4a). Significant areas of the
provinces have moderate to high potential for the construction, operation, and maintenance
of off-grid PV microgrids, of which the southeast to southwest and the middle east to
northeast regions are the most suitable elevations. The conditions for the slope criteria are
similar to those for the elevation criteria (Figure A4b). North and northeast to northwest
oriented regions have a higher potential to receive solar radiation and are therefore more
suitable. These regions are more likely to be found in the country’s north and center, as
seen in the aspect raster map in Figure A4c.

The proximity to roads, railways, and airports, taking into account the given buffer
zone, is presented in Figure A5 in Appendix B. This result can help reduce the final
installation cost and environmental degradation that the construction of solar PV microgrids
would cause. However, most of the roads shown in Figure A5a near the off-grid and rural
areas are not paved, and this criterion should be reconsidered and carefully analyzed in
terms of economic impact. The existing railway network in Mozambique dates from the
colonial era and was geared toward a service economy that connected the hinterland to
the outside world through Mozambique’s ports and coal exports, rather than the socio-
economic development of rural or off-grid areas. Nevertheless, after reclassifying and
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fuzzifying the distance, Figure A5b shows that the country has an acceptable railway
infrastructure that allows the feed-in of off-grid solar PV microgrid projects, thus increasing
the economic viability of these projects in rural and off-grid areas of the country. In terms of
distance from airports to rural and off-grid areas, the northern and central regions have less
distance than the southwest region of the country, as shown in Figure A5c. In this study,
off-grid areas are considered as areas 20 km away from the national electricity transmission
and distribution network. Therefore, the highest priority regions for these criteria are in
the north, followed by the extreme center in the west and a large part in the southeast, as
shown in Figure A5d.

Inland waters are classified as a technical criterion in this study because they have a
significant impact on the efficiency of the solar systems, since a relevant quantity of water is
needed for the regular cleaning of the PV modules and Mozambique is crossed by several
waterways, rivers, and banks, as shown in Figure A5e.

Population density is considered in this particular study as a social and techno-
economic criterion that helps identify where the demand is to provide the most cost-
effective solutions. Regions with low population density are considered more suitable for
electrification based on off-grid solar PV microgrid projects since people cannot afford
electricity from the main grid due to their remote location, high cost of grid expansion,
and socio-economic conditions. As can be seen in Figure A5f, after the reclassification and
fuzzification of the population density map, the country has large areas for the installation
of off-grid solar PV projects.

Beyond the commonly used criteria (climatological, orographic, technical, and loca-
tion), there is a need for holistic research that leaves no society behind and works toward a
just transition and a decarbonized, digitized, and democratized energy economy. Therefore,
this study applied social and institutional criteria to the GIS, Boolean logic, fuzzy logic,
and AHP MCDM framework based on regulations, the national rural electrification plan,
socio-economic factors and indicators of the country, and the job opportunities and forma-
tion factor, which constitutes an innovative and novel approach. The national off-grid rural
electrification plan map was developed and illustrated based on the FUNAE dataset [66],
especially data from the portfolio of solar energy projects, and the regulation of energy
access in off-grid areas [50] published in 2019 and 2021, respectively.

The method adopted by FUNAE for the selection of the solar PV micro- and mini-grid
project sites followed a set of variables such as population density and its dispersion;
availability of energy resources; economic and social activities that are developed locally;
existing infrastructure; and priorities set under existing programs. However, the portfolio
as well as some variables can vary greatly depending on the ongoing feasibility studies.
Figure 7a presents the reclassification and fuzzification of the national rural electrification
plan map, in which a value of 1 represents a completed membership degree or an existing
rural electrification plan in the region.

The Human Development Index (HDI) sub-criteria were created according to the
socio-economic profile and performance of a population based on a dataset from [92]
and [93] by performing a principal component analysis to combine the national index such
as socio-economic vulnerability and the percentage of people living in a household whose
head does not have access to education and health facilities. The integration of social and
institutional factors into the framework can play an important role in improving the HDI of
rural populations. The HDI map highlights the most vulnerable populations with limited
options in the center and north of the country and in Gaza province in the south of the
country. Most of the central and northern regions were reclassified and fuzzified as priority
regions for renewable energy projects based on the dataset results from the raster map, the
knowledge of the authors, and the objectives of the study, as shown in Figure 7b.
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Figure 7. Standardized (reclassified and fuzzified) raster maps of institutional criteria and social

criteria to the spatial suitability of off-grid solar PV microgrid projects in Mozambique. (a) National

plan for rural electrification, (b) Human Development Index, (c) unemployment rate, and (d) energy

justice and equity.

Unemployment rates are also determined by the HDI, resulting in fewer opportunities
for young men and women. Nevertheless, Mozambique shows a decrease in the unem-
ployment rate from 20.7% in 2014–2015 to 17.5% ± 3.2% in 2019–2020. In urban areas, the
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unemployment rate is extremely high compared to that in rural areas, at 28.9% compared
to 11.4% [94]. The province of Zambezia and the northern region of the country have the
lowest unemployment rate. Based on the unemployment rate map and the goals of this
study, the regions with the highest unemployment rates in the country were reclassified
and fuzzified as priority areas for solar energy projects, as shown in Figure 7c. Associating
the unemployment rate and the job opportunities that renewable energy has been gener-
ating in the last decade, the deployment of off-grid solar PV projects can provide a great
opportunity for job creation and alternatives to support the household, commercial, and
agricultural sectors’ needs and contribute to rural development.

According to data from IRENA 2022, solar PV employment retains the top spot in
the world, with 4.3 million in 2021, up from about 4 million in 2020, and 56% of these jobs
are located in rural areas, with parts of sub-Saharan Africa and South Asia at 372,000 full-
time equivalent jobs [95]. Mozambique has already begun to harness its solar potential
and promote job creation in the renewable energy sector. One example is the creation of
approximately 1209 direct and 410 indirect jobs in the grid-connected Mocuba and Metoro
projects, respectively. The uptake of off-grid solar energy for productive use also promotes
direct job creation throughout the energy value chain in Mozambique, with approximately
380 jobs.

To make universal access to electricity and the transition to a more sustainable energy
system equitable, several dimensions of social justice must be considered. The energy
justice network used in this study aims to reduce the current vulnerability of communities
by analyzing the various existing power plants (solar PV mini-grids, large PV power plants,
thermal, and hydropower plants) as well as the electrification rates. Using the Euclidean
distance and the fuzzy logic approach to classify areas that are harmed or not equitable
in terms of access to electricity and existing power plants in the country, it was found in
Figure 7d that the central and northern areas are slightly behind the southern regions of
the country. It can be assumed that this result is related to the electrification rate in the
southern region, which is over 52%. Therefore, in order to reduce energy inequality, the
central and northern regions of the country should be considered as a priority for solar PV
microgrid projects.

Figure A6 in Appendix B shows the reclassified and fuzzified raster maps for lower
priority and restricted areas and their respective buffer zones as well as the fuzzy ranking
considering the objectives of the study area. To ensure that solar PV microgrid projects in
rural areas are given priority, all major cities were excluded, and a buffer zone of 40 km
was established. The regions are prioritized in ascending order, as shown in Figure A6a
(major cities), and the prioritization order for the criteria of settlement, agriculture, tropical
cyclones, protected areas, and floodplains is also ascending.

3.5. Implementation of the AHP for the Weighting Criteria Process

In this study, a questionnaire method was used to collect the evaluations and ratings
of 16 experts regarding their gender, entity, country, and self-assessment and evaluation of
the criteria. While 25% of the experts were female, 75% were male (Figure 8a). Figure 8b
shows the three expert groups, namely private sector/company, public sector/government
institutions, and academia/researchers, with a contribution of 6%, 13%, and 81%, respec-
tively. The experts were from the fields of environmental engineering, renewable energy,
energy planning, renewable energy integration planning, sustainable energy systems, elec-
trical engineering, on-grid and off-grid renewable energy systems, energy efficiency, and
management specialties based in Mozambique (81%), Angola (13%) and Portugal (6%)
and were asked to evaluate, score, and weight the criteria for each category. As shown in
Figure 8d, the experts rated the criteria for installing off-grid solar PV microgrid projects in
Mozambique from high to very low priority criteria.
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Figure 8. The main characteristics of experts and criteria judgment.

As mentioned in the methodology, the second step was to define the hierarchical
decision framework, which had to be aligned with the strategic objectives of the study. For
the current study area, the AHP was created by considering climatological, orographic,
technical and location, social, and institutional criteria. The following set of nineteen
sub-criteria (level three) and five alternatives (level four) were accepted and grouped into
five categories (level two), as shown in the hierarchy in Figure 9.

 

𝐶 |𝐶 𝐶 |𝐶𝐶

1 21 5 1 31 7 1 5 1 31 9 1 7 1 5 1 3

Figure 9. Hierarchy of criteria applied to the AHP for siting off-grid solar PV microgrid projects.
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3.5.1. Pairwise Comparison Matrix for the Solar PV Microgrid Projects

Once the hierarchy was established, the second important step was to create the
comparison matrix using SpiceLogic AHP Software [55] to check the consistency of the
aggregated multiple judgment of the criteria and sub-criteria (Equation (2)). The evaluation
began by determining the relative weight of the initial five groups of criteria (Figure 9).
First, the climatological criteria were considered by the experts as the most important
criteria because they define the output power of the solar PV microgrid (see Figure 8).
Next were the orographic criteria, as they determine the amount of irradiation on the solar
modules (slope and orientation) and the economic viability (elevation). These criteria were
reevaluated and pondered by the authors based on expert opinion, in which the expert
evaluated technical and location criteria as the second most important. From a techno-
economic perspective, the experts and the authors rated technical and location criteria
and, in the following order, social and institutional criteria as the least important factors to
consider in the decision analysis for the siting of off-grid solar PV microgrid projects. Based
on the reasoning mentioned above and the expert evaluation, the pairwise comparison
matrix of size 5 × 5 elements of main criteria Ci

∣

∣Cj was constructed, as shown in Table 7.
The Ci

∣

∣Cj (climatology, orography, technical and location, social, and institutional) are the
set of criteria evaluated and Cij are values from the nine-level (one to nine) comparison
scale (see Table 2) conferred by the expert’s judgment (see Figure 8).

Table 7. Comparison matrix of the adopted decision criteria obtained from experts’ judgments.

1 Criteria CL OR TEL SO IN

CL 1 2 5 7 9
OR 1/2 1 3 5 7
TEL 1/5 1/3 1 3 5
SO 1/7 1/5 1/3 1 3
IN 1/9 1/7 1/5 1/3 1

1 Criteria: climatic (CL), orographic (OR), technical and location (TEL), social (SO), and Institutional (IN).

After the pairwise comparison matrix had been created, to interpret and give relative
weight to each criterion, the normalization of the comparison matrix was calculated by
dividing each value by the total value of the column.

The third important step was to compute the priority weights, checking for consistency
and assessing the robustness of decisions across various scenarios and criteria. The AHP
was used to calculate and extract the eigenvector, which denotes the priority weight of
each criterion. The sum of all extracted weights should equal one or 100%, as shown in
the summary of AHP results (Table 8). The weighted values of each main criterion and
consistency ratio (CR) were calculated based on Equation (6) (λmax = 5.28), Equation (7)
(CI = 0.046), Table 3 (RI = 1.12), and Equation (8) (CR = 0.041); because CR (Equation (7))
is less than 0.10, the AHP results are considered acceptable and the CR shows that the
compatibility among the experts’ judgments or the evaluation criteria was appropriate.
Table 8 shows the relative priority weights for the sub-criteria. The CR index for sub-criteria
was computed in the range of [0, 0.078] (<0.1), indicating that the judgments made for
the sub-criteria are reliable, consistent, and can serve as a basis for informed decision
making. As previously mentioned, the climatological group with a weight of 0.479 was
selected as the most important group by expert evaluation due to its significant effect on
energy generation.

3.5.2. Initial Site Suitability Maps

Figure 10 shows the initial preparation of the solar PV microgrid suitability map for
each climatological, orographic, technical, locational, social, and institutional sub-criterion.
The weighted linear sum method from WLC was applied after the AHP process and the
aggregation of weights in each sub-criterion in the ArcGIS environment.
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Table 8. Criteria and sub-criteria priority weights obtained from authors’ and experts’ judgments.

Criteria Weights×100% Sub-Criteria Weights×100% CR

Climatology 0.479

Solar irradiation 0.55136

0.014
Temperature 0.21213

Relative humidity 0.13107
Precipitation 0.05551
Wind speed 0.04993

Orography 0.288
Slope 0.17818

0.028Elevation 0.07042
Aspect (Orientation) 0.75140

Technical and Location 0.133

Settlement 0.28422

0.078

Population density 0.34411
Roads 0.13863

Railways 0.09012
Airports 0.06183

Electricity transmission network 0.01651
Inland water 0.06458

Social 0.065
Job opportunities 0.17818

0.028Human Development Index 0.75140
Energy justice and equity 0.07042

Institutional 0.034
National rural electrification plan 0.6667

0Policy and regulatory support 0.3333

 

Figure 10. Initial suitability areas applied in the AHP. (a) Climatic, (b) orography, (c) technical and

location, (d) social, and (e) institutional suitability map for off-grid solar PV microgrid deployment.
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The initial site suitability map for off-grid solar PV microgrid installation in Mozam-
bique was obtained by fuzzy overlaying the climatic, orographic, technical and location,
social, and institutional criteria layers with corresponding weights calculated by a com-
bination of AHP and expert judgment with values of 0.479, 0.288, 0.133, 0.065, and 0.034,
respectively (see Tables 7 and 8). The resulting weighted maps are then overlaid to generate
raster maps of suitable sites (see Figure 11).

3.5.3. Final Site Suitability Maps

To obtain the final suitability models, unfavorable areas were identified and eliminated
according to the objective of the study and the socio-economic and socio-environmental
conditions of the country. Thus, all the constraint layers were reclassified and, using
Boolean logic and the WLC approach, the final thematic constraint layers were obtained,
as shown in Figure 6. These were then used to mask the lowest suitable and constrained
areas to increase the accuracy of the resulting site suitability map for off-grid solar PV
microgrid projects. Therefore, the elimination of constraints is performed by combining
the standardized final restriction map and the initial site suitability map through the
fuzzy overlay of the WLC. Figure 12 shows the thematic maps of the lowest suitable
and constrained areas and suitable sites for the installation of off-grid solar PV microgrid
projects in Mozambique. The indicated classification—lowest suitable and constrained
areas, low suitable, moderately suitable, suitable, and high suitable—represent the different
priorities and ranking to allocate off-grid solar PV microgrid projects.

Figure 11. Initial site suitability map for off-grid solar PV microgrid deployment.
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Figure 12. Final site suitability map for off-grid solar PV microgrid deployment.

4. Discussion

The world is making progress toward achieving Goal 7 (SDG#7) and there are encour-
aging signs that energy is becoming more sustainable and available. Access to electricity in
low-income countries has begun to accelerate, energy efficiency continues to improve, and
renewable energy is making impressive progress in the electricity sector [96]. Mozambique
is also taking important steps in this direction, and one of the fastest-growing resources is
solar power. However, decision-making processes for the development of off-grid solar
PV microgrid projects are in some cases proposed without a real assessment or in-depth
consideration of the social, institutional, technical, economic, and environmental aspects;
spatial planning of areas that could be identified as suitable areas; or of areas where the
construction of such projects is impractical or highly inadvisable [97].

Moreover, most of the literature lacks quantifiable models that consider social, institu-
tional, and environmental aspects. This analysis involved diverse experts who evaluated
different criteria and factors for modeling site suitability for off-grid solar PV microgrid
installation in Mozambique. The identification and mapping of these areas is an essential
element for sustainable rural electrification planning in Mozambique.

This study has highlighted an important framework for determining the most suitable
locations for off-grid solar PV microgrid projects. The use of the proposed mathematical
approaches, such as Boolean logic, fuzzy set theory, and AHP, in a GIS-MCDM analysis has
proven to be an efficient method for decision support in the selection of suitable areas for
off-grid solar PV projects. The employed hybrid model offers better results and makes a
solar project more economically, technically, and socially feasible.
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To select the optimum sites for an off-grid solar PV microgrid in the study area,
12 restriction factors and 19 criteria were used to perform the GIS-MCDM analysis. The
use of the Boolean logic strategy and fuzzy logic approach to standardize the criteria had
a direct impact on the accuracy of the potential map results. The decision-making plan
was based on the construction of a hierarchical spatial model using a multiple comparison
pairwise matrix of the AHP, which allowed a judgment or decision to be made based on
the weights for the criteria and sub-criteria, whereas the WLC technique was used to sum
the weights and identify and rank the optimal areas. A similar methodology was used in
the studies [29,52,98–101].

According to the initial site suitability map in Figure 11, the degree of site suitability
ranges from 0.22 to 0.83, with 0.22 indicating the lowest suitability and 0.83 indicating the
best suitability of the site for installing an off-grid solar PV microgrid. The final values of
the ranking and prioritization map are divided into 5 suitability intervals for the different
regions of the study area, with values of [0, 0.09] (constrained location), [0.09, 0.22] (lowest
suitability), [0.22, 0.45] (low suitability), [0.45, 0.56] (moderate suitability), [0.56, 0.65] (good
suitability), and values above 0.65 (excellent suitability) indicating the theoretical potential
for installing an off-grid solar PV microgrid in Mozambique.

According to the resulting map in Figure 12, the excellent or highly suitable rural
locations for off-grid solar PV microgrids solution in Mozambique are concentrated in
the central west of Manica and Tete provinces, the northwest of Zambézia and Nampula
provinces, and the southwest of Niassa and Cabo Delgado. This is followed by the northern
provinces of Inhambane with good suitability. Likewise, good suitability was found in
wide areas almost throughout the country, except for a few separate areas, including in
Maputo province, in the northwest and southwest of Sofala provinces, and in the north
of Gaza province. Moderate suitability was found in the north of Maputo province and
almost in the whole country. Additionally, the low suitability locations areas were found
in the extreme north of Maputo province. Table 9 shows and summarizes the different
percentages of actual land area suitability at both regional and national levels.

Table 9. Share of solar PV microgrid potential per suitability class.

Rural Areas by
Province

Suitability Area Classification

High Good Moderate Low Lowest

% km2 % km2 % km2 % km2 % km2

Cabo Delgado 24.63 19,237 26.85 20,971 17.08 13,340 3.73 2913 27.70 21,635
Niassa 13.59 17,578 17.91 23,166 11.93 15,431 3.69 4773 52.88 68,399

Nampula 15.10 11,833 17.06 13,369 13.19 10,336 4.71 3691 49.94 39,135
Zambézia 11.00 11,334 15.00 15,456 12.00 12,365 7.00 7213 55.00 56,672

Tete 12.70 12,822 17.78 17,950 8.25 8329 6.33 6391 54.93 55,456
Manica 12.82 7997 16.37 10,211 14.76 9207 2.75 1715 53.31 33,254
Sofala 5.91 4003 8.13 5507 7.92 5364 2.11 1429 75.93 51,428

Inhambane 18.73 12,881 31.53 21,684 28.94 19,903 3.19 2194 17.61 12,111
Gaza 5.74 4335 16.28 12,296 10.09 7621 3.39 2560 64.50 48,717

Maputo 6.94 24.13 16.39 56.99 16.27 56.57 3.30 11.47 57.10 198.55

Total 12.7 102,044.5 18.3 140,667.1 14.0 101,952.8 4.0 32,890.8 50.9 387,005.2

The final site suitability map for off-grid PV microgrid installations (Figure 12) pro-
vides a good understanding and high-level overview of the potential site suitability of PV
technology in the study area based on GIS and MCDM. In the AHP, it is found that the
climatic hierarchy group has a weight of 47.9%, compared to the orographic group with
28.8%, the technical and location group with 13.3%, the social group with 6.5%, and the
institutional group with 3.4%. Thus, the climatic criteria are the most important group in
this study, as they determine the potential electricity generation of PV technology, as shown
in works such as [29,31,32,34,35].

The available area was classified into five degrees of suitability: lowest suitability and
constrained areas, low suitability, moderately suitable, suitable, and highly suitable. It
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was found that 49% of the study area is suitable for the development of off-grid solar PV
microgrids. The result of the study shows that the central western and northern regions
of the country have the highest priority and cover 13% of the total area, followed by
good suitability and moderate suitability with 18% and 14%, respectively (Figure 13).
The locations suitable for off-grid solar PV microgrid projects have several significant
characteristics, including high solar irradiation, low temperature, low relative humidity,
low slope, and a north orientation, as well as low population density and low Human
Development Index.

 

Figure 13. Boolean logic, Fuzzy logic, and AHP GIS-MCDM spatial analysis results per suitability for

off-grid solar PV microgrid installation.

However, 51% of the cataloged areas coincide with unfeasible and restricted areas.
This is due to the aforementioned large number of unfeasibility and constraint criteria used
for this study, such as protected and agricultural areas, inland waters, flood and storm
cyclone hazards, roads, railways and airports, high population density and settlements,
and areas with power transmission networks. Consequently, the model developed in this
study for off-grid solar PV microgrid projects is more complete because it uses a larger
number of criteria and different sources, most with finer spatial resolution. In addition, the
developed model easily allows for re-evaluation if any of the criteria are updated, or the
weighting of the criteria is changed.

The Government of Mozambique has planned the use of renewable energy, mainly
solar energy, in the coming years as part of the national program for off-grid electrification
of rural areas implemented by FUNAE. To this end, the government launched the solar
energy project portfolio [66] and the regulation of energy access in off-grid areas [50] in 2021
and 2019, respectively. From the portfolio data, 70% of the planned solar PV mini-grids
and microgrids are located in areas with significant potential for solar PV projects, as
shown in the model results. However, the model also identified 30% of solar PV projects
planned in impractical, lowest suitability, and constrained areas, as shown in Figure 14a.
Additionally, the model performance was evaluated for large-scale solar PV power plants,
minigrids, and microgrids (Figure 14b). The study shows that the three existing large-scale
solar PV power plants in Cuamba, Metoro, and Mocuba districts are in excellent (highly
suitable), good (suitable), and moderate (moderately suitable) suitable areas, respectively.
A total of 50% of the implemented minigrids and microgrids match locations in the model
which are classified as excellent, good, and moderately suitable. However, another 50%
of implemented solar PV minigrid and microgrids are in areas considered lowest suitable
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and restricted, namely 25% in protected areas, 15% in flood risk areas, and 10% in cyclone-
risk areas.

Figure 14. Model performance verification: (a) planned minigrid and microgrid solar PV projects

and (b) implemented large-scale, minigrid and microgrid solar PV projects.

5. Conclusions

This study presents a hybrid methodology for solar PV system mapping with a
particular focus on off-grid solar PV microgrids. The spatial planning strategy proposed
for off-grid areas in Mozambique can provide comprehensive and applicable innovations
for different geographic regions. This strategy demonstrates how the combined application
of Boolean logic, fuzzy logic, AHP, and WLC approaches based on GIS-MCDM formulates
a meaningful, clear, and reproducible research framework that incorporates climatological,
orographic, technical, economic, environmental, social, and institutional data related to site
selection for off-grid solar PV microgrid installations. It is noteworthy that the GIS-MCDM
study conducted a comprehensive examination of social and institutional factors, including
job opportunities and creation, Human Development Index, energy justice and equity, and
national regulations and plans for off-grid rural electrification through solar energy systems
in Mozambique. This examination is novel and relevant in the context of off-grid rural
electrification in Mozambique.

The integration of GIS-MCDM methods has become a highly effective way to sys-
tematically deal with extensive geographic information data and manipulate important
variables to identify the best locations for off-grid solar PV projects. Thus, the results of
the research framework will support policy makers in spatial planning and investors in
off-grid solar PV microgrids in both the public and private sectors in Mozambique. The
main findings of this study are as follows:

• Spatial decision-making analysis shows that the potential areas for installing off-grid

solar PV microgrid systems cover 344,664.36 km2, which is approximately 49% of the
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study area and is mainly concentrated in the central western and northern areas of the
country. Conversely, the lowest suitability or not recommended for installation level
accounts for 51% (387,005.24 km2) of the total study area.

• The final suitability map analysis reveals that 13% of the study area exhibits high
suitability, 18% shows good suitability, followed by moderate and low suitability in
14% and 4%, respectively.

• The research framework enabled the conclusion that climatic criteria, followed by
orographic criteria, have the greatest influence on the selection of suitable sites for the
integration of this technology, but also explicitly acknowledges and considers other
criteria that may not only limit the potential of certain sites, but even exclude regions
that are classified as lowest suitable and constrained areas. These strategies can help
Mozambique and other sub-Saharan African countries achieve their solar power plant
locations and SDG goals for a more sustainable energy future.

Despite the large amount of data sets, modeling, and analysis involved in this paper,
some limitations remain. One is the strong dependence of the accuracy of the results on
the opinion of experts. This limitation is addressed by a new method based on fuzzy-AHP,
which eliminates the imprecise judgments of experts in the construction of the comparison
pair matrix. Although the proposed method provides an accurate and efficient mechanism
for selecting suitable sites for off-grid solar PV microgrid projects, the evaluation of the
economic potential and the estimation of the PV power potential of an off-grid solar PV
microgrid system in Mozambique is not investigated here. This requires a comprehensive
and detailed study of the effective economic parameters and can be considered in future
research. To further strengthen the proposed methodology, appropriate multiple criteria
and constraints related to other RES-based site selection problems such as wind, biomass,
geothermal, and other RES should be considered.
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Abbreviations

AHP Analytic Hierarchy Process

ANP Analytic Network Process

ARAS Additive Ratio Assessment

BWM Best Worst Method

CL Climatology

COP-21 Paris Agreement

COPRAS Complex Proportional Assessment of Alternatives

CSP Concentrated solar power

DEM Digital Elevation Model

EDM Electricidade de Moçambique

ELECTRE Elimination and Choice Expressing Reality

ESRI Environmental System Research Institute

FUNAE Energy Fund
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GHG Greenhouse Gases

GIS Geographical Information System

GMM Geometric Mean Method

GRA Grey Relational Analysis

HDI Human Development Index

IN Institutional

LA Linear ascending

LD Linear descending

MCDM Multi-criteria Decision-Making

MULTIMOORA Multi-Objective Optimization On The Basis Of Ratio Analysis

Plus Full Multiplicative Form

OCRA Operational Competitive Rating Assessment

OR Orographic

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluations

PSI Preference Selection Index

PV Photovoltaic

RES Renewable Energy Sources

SO Social

TEL Technical and location

TODIM Interactive Multicriteria Decision-Making

TR Triangular

TZ Trapezoidal

Appendix A

Table A1. Recent works conducted on applications of MCDM methods in PV power plant site selection.

Ref. Year
Case

Study MCDM
* Evaluation Criteria

EN CL OR TE EC LO SO PO

[30] 2022 Ghana GIS-AHP X X X X X
[31] 2022 Egypt GIS-AHP X X X

[36] 2022 Ecuador
GIS-AHP-ARAS-OCRA,

PSI-SMART-TOPSIS-VIKOR-WLC
X X X

[32] 2021 Turkey GIS-AHP-WLC X X X
[34] 2021 Peru GIS-AHP-WLC X X X X
[33] 2020 Indonesia GIS-AHP X X X X
[35] 2018 China TOPSIS X X X

[24] 2022 Iran
TOPSIS-TODIM-WASPAS-COPRAS-ARAS-

MULTIMOORA
X X X X X

[42] 2021 India GIS-FAHP-WLC X X X X
[29] 2022 Iran GIS-FAHP-WLC X X X X
[20] 2020 Brazil AHP-TOPSIS X X X X
[25] 2021 Iran BWM-VIKOR-GRA X X X X
[37] 2020 China GIS-BWM-WLC X X X X
[101] 2021 Iran GIS-FBWM-WLC X X X
[43] 2019 Pakistan AHP-FVIKOR X X X X X X
[38] 2016 Spain AHP-ELECTRE TRI X X X X
[39] 2014 Spain GIS-ELECTRE TRI X X X X
[102] 2014 China ELECTRE-II X X X X X
[41] 2022 Turkey AHP-ANP-PROMETHEE X X X
[27] 2021 Greece PROMETHEE II X X X X
[40] 2020 Spain AHP-PROMETHEE-WLC X X X

* Evaluation criteria: environmental (EN), climatological (CL), orographic (OR), technical (TE), economic (EC),
location (LO), social (SO), and political (PO).
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Appendix B

 
Figure A1. Maps with constraints considered for the analysis of the spatial suitability of off-grid solar

PV microgrid projects in Mozambique. (a) Protected areas, (b) agricultural areas, (c) inland waters,

(d) roads, (e) railways, and (f) airports.
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Figure A2. Maps with constraints considered for the analysis of the spatial suitability of off-grid solar

PV microgrid projects in Mozambique. (g) Major cities, (h) settlement, (i) high population density

areas, (j) electricity transmission and distribution network, (k) high flood risk areas, and (l) tropical

cyclone high risk areas.
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Figure A3. Standardized (reclassified and fuzzified) raster maps of climatology criteria applied to

the spatial suitability of off-grid solar PV microgrid projects in Mozambique. (a) Solar irradiation,

(b) temperature, (c) wind speed, (d) relative humidity, and (e) precipitation.
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Figure A4. Standardized (reclassified and fuzzified) raster maps of orography criteria applied to the

spatial suitability of off-grid solar PV microgrid projects in Mozambique. (a) Elevation, (b) slope, and

(c) aspect.

 

Figure A5. Standardized (reclassified and fuzzified) raster maps of technical-location criteria ap-

plied to the spatial suitability of off-grid solar PV microgrid projects in Mozambique. (a) Distance

from roads, (b) distance from railways, (c) distance from airports, (d) distance from the electricity

transmission network, (e) distance from inland waters, and (f) areas of low population density.
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Figure A6. Standardized (reclassified and fuzzified) raster maps of location restriction applied

to the spatial suitability of off-grid solar PV microgrid projects in Mozambique. (a) Major cities,

(b) settlements, (c) agricultural areas, (d) protected areas, (e) flood areas, and (f) tropical storms and

cyclone areas.
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